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Higher-spin-like symmetries and gauge models

Abstract

Higher derivative generalizations of translation symmetries (i.e. higher-spin-like symme-

tries) are utilized in this work in a novel approach to gauging, leading to a Yang-Mills-like

theory defined over a symplectic manifold dubbed ”master space”. The developed theory

incorporates the starting symmetries by using the Moyal product, has a weakly non-local

action functional, it is perturbatively stable and admits a description in terms of an L∞

algebra. The spectrum of the theory is analyzed in terms of Wigner’s classification and to

that purpose a novel unitary representation of the Lorentz group is built on the space of

Hermite functions. The formulated field is massless and contains arbitrarily high helici-

ties, while the square of the Pauli-Lubanski vector does not necessarily vanish, indicating

that model contains continuous spin field degrees of freedom.

The master space and the discovered symmetry can serve to build additional gauge field

models, and we explicitly provide such candidate theories. In the Yang-Mills-like model we

find an additional tower of conserved currents. Further, we display how matter fields can

be modeled in the master space with coupling to the Yang-Mills like model and calculate

scattering amplitudes for the simplest processes. Finally, we turn our attention to the low-

spin sector of the theory and find a geometric description reminiscent of teleparallelism,

with the induced linear connection related to Weitzenböck’s. We apply the low-spin

results to find additional general background solutions of the complete theory.

Keywords: higher spin fields, higher spin symmetry, gauge symmetry, non-commutative

geometry
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Simetrije višeg spina i baždarni modeli

Prošireni sažetak

Iako su slobodna polja višeg spina (gdje je s > 2) veoma dobro teorijski opisana,

trenutno ne postoji potpuna interagirajuća teorija takvih polja u ravnom prostor-vremenu.

Polja "nižeg spina" izvrsno služe opisu prirode; u slučaju spina s = 1 omogućuju opis

elektromagnetske, slabe i jake sile dok u slučaju spina s = 2 sudjeluju u opisu gravitacije.

Osim same znatiželje kakvu bi ulogu polja višeg spina mogla imati u opisu prirode, postoje

brojne naznake kako bi njihova korisnost mogla biti velika u stvaranju konzistentnog opisa

kvantne gravitacije.

Izravna ideja za formulaciju interagirajuće teorije viših spinova je početi sa slobod-

nim teorijama i potom ih deformirati red po red u deformacijskom parametru, pritom

zahtijevajući konzistentnost s očekivanim simetrijama. Iako jasna, ta je ideja veoma

teška u provedbi, pa literatura trenutno oskudijeva potpunim rezultatima, dok djelomični

rezultati postoje. Tehnička zahtjevnost ovog problema nije jedina teškoća na putu ka in-

teragirajućoj teoriji - postoji značajan broj teorema koji pod strogo određenim uvjetima

zabranjuju postojanje interagirajuće teorije viših spinova. Te je uvjete važno uzeti u obzir,

ne kao opstrukciju, već kao uputu kakva svojstva u teoriji očekujemo, kako bi interagi-

rajuća teorija mogla postojati. Tri su najvažnija takva svojstva kojima možemo zaobići

uvjete navedenih teorema; spektar teorije sadržava neograničen broj polja, u formulaciji

teorije postoji određena vrsta ne-lokalnosti, a Lorentz-kovarijantnost nije ograničena na

konačno dimenzionalne reprezentacije Lorentzove grupe. Ova se tri svojstva zaista po-

javljuju u modelu koji razvijamo u ovom radu, prvenstveno baziranom na radovima [1, 2]

i istraživanju započetom u [3].

Od trenutnih pristupa interagirajućim teorijama višeg spina ističemo Vasiljevljevu

teoriju [4, 5] koja opisuje interagirajuća polja višeg spina u AdS prostor-vremenu, no bez

mogućnosti prijelaza u ravno prostor-vrijeme i u formalizmu bez akcije, veoma udaljenom

od konvencionalne teorije polja. U ravnom prostor-vremenu razvijena je "kiralna grav-

itacija višeg spina" [6, 7], no uz kompleksan Hamiltonijan i S-matricu jednaku identitetu.

Naš se pristup temelji na iskorištavanju simetrija jednostavnih modela materije, poput
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masivnog kompleksnog skalarnog polja, koje je simetrično na transformacije

δεφ(x) =
∞∑
n=0

(−i)n+1εµ1...µn ∂µ1 · · · ∂µnφ(x) . (1)

Kroz odgovarajuću reformulaciju modela materije, definiramomaster-prostor, mnogostrukost

koja je sačinjena od direktnog produkta prostor-vremena i pomoćnog prostora čije koor-

dinate označavamo slovom u, nalik na fazni prostor točkaste čestice. Kroz korištenje

Moyalovog ? - produkta, polazne simetrije možemo izraziti kao

δεWφ(x, u) = i[Wφ(x, u) ?, ε(u)] , (2)

gdje jeWφ(x, u) = φ(x)?δd(u)?φ†(x) Wignerova funkcija sačinjena od polja materije. Na

pozornici master prostora tada dolazimo do mogućnosti za formulaciju baždarnog polja

ha(x, u) s infinitezimalnom baždarnom simetrijom

δεha(x, u) = ∂xaε(x, u) + i [ha(x, u) ?, ε(x, u)] (3)

i teorije formalno nalik Yang-Mills teoriji, a sa mogućnošću općenitije formulacije u kojoj

je teorija nalik Yang-Mills-ovoj samo jedna moguća faza. Prema nedavnoj pretpostavci [8],

konzistentne klasične teorije polja moguće je opisati L∞ algebrom, pa tako pronalazimo

opis i naše teorije kroz L∞ algebru.

U spektru naše teorije se nalaze pobuđenja proizvoljno visokog heliciteta, a zbog

neiščezavajuće vrijednosti kvartičnog Casimirovog operatora Poincaré-ove grupe, dolaz-

imo do zaključka da naša teorija sadrži stupnjeve slobode beskonačnog spina - još uvijek

nepotpuno istražene kategorije elementarnih čestica po Wignerovoj klasifikaciji. U svrhu

analize spektra razvijena je i nova reprezentacija Lorentzove grupe na prostoru Hermitovih

funkcija.

Nadalje, pokazujemo kako koristiti pronađenu simetriju za formulaciju dodatnih baž-

darnih modela, analizu mogućih simetrija i opis polja materije, koji primjenjujemo za

izračun amplituda raspršenja jednostavnih procesa u granastoj aproksimaciji.

Konačno, posebnu pažnju posvećujemo dijelu naše teorije u kojem se nalaze samo

pobuđenja niskog spina, pa pronalazimo specifičnu geometrijsku sliku, pomalo nalik telepar-

alelnoj geometriji, no uz linearnu koneksiju suprotnu Weitzenböckovoj.

Ključne riječi: polja višeg spina, simetrije višeg spina, baždarne simetrije, nekomu-

tativna geometrija
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Chapter 1

Introduction and Motivation

Higher-spin theory, where higher-spin means s > 2, is a growing field of research whose

origins coincide with the birth of quantum field theory. While free field theories are

well known, it is difficult to describe interactions. In this work we present a possible way

forward. In the introductory chapter, we describe the motivation to pursue research in this

direction, prepare the terminology, and introduce several established research programs.

We then outline our approach, which departs from the traditional way of building an

interacting higher-spin theory, and summarize the results presented in the main body of

the thesis.

1.1 Motivation

It has been a long standing problem in theoretical physics to construct a satisfactory

theory of quantum gravity. Conventional approaches with quantizing General Relativity

result in a non-renormalizable theory, indicating insufficiency of General Relativity in

describing high-energy processes. However, not even renormalizable theories are liberated

from problems at high energies - the existence of a Landau pole in QED serves as an

example. Today’s experiments cannot probe the physics of our models at energies where

these problems arise, so we turn instead to a detailed study of theoretical (mathematical

and physical) constructs and aim to reach a self-consistent description of nature at all

energy scales. In various approaches to solving these problems we encounter higher-spins.

Better behavior of scattering amplitudes at high energies was noticed in string theory;

loop amplitudes are rendered finite which can be seen as due to an exchange of an infinite
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tower of higher-spin states [9]. Spin 2 being among them makes string theory a quantum

theory of gravity. Sprung out of string theory is the conjectured AdS/CFT correspondence

[10]. The conjecture is widely used and shown to work in numerous cases, evidence

mounting towards its validity. The bulk side of the correspondence which should describe

a quantum gravity theory routinely contains propagating degrees of freedom of higher-

spin. Another motivation for studying higher-spins as a way towards quantum gravity

comes from [11] where it was argued that one way to respect causality in higher derivative

gravity is to extend the spectrum of the theory with higher-spin fields (see also [12] for a

more constraining argument).

An important source of motivation is pure curiosity. Lower-spin fields are expedient in

describing fundamental physics. What then is the role of higher-spin fields in our descrip-

tion of nature, and what is the appropriate theoretical framework for their formulation?

1.2 Higher-spin theory

An explanation of spin being a classifying number of elementary particles and their as-

sociated fields comes from Wigner’s classification [13] where the particles are labeled by

the eigenvalues of the Casimir invariants of the Poincaré algebra. Relevant cases include

massive particles with definite spin (e.g. W and Z bosons), massless particles with definite

helicity (e.g. photons), and a yet unobserved case of massless particles labeled by a di-

mensionful parameter, each containing an infinite number of helicities. Spin and helicity

are unfortunately degenerate in the literature, and we will conform to this lore. A more

detailed exposition of Wigner’s classification will be given in chapter 4.

A direct way to ensure that a constructed field theory contains propagating degrees

of freedom of a definite spin is to have the fields satisfy a certain set of partial differential

equations, whose space of solutions carries the representation of the Poincaré group1.

In the case of massive particles with integer-spin, a simple way to represent the

Poincaré group is to use Lorentz tensor fields ϕµ1...µr(x) satisfying the following differ-
1This is valid in case of a Minkowski background. In general one can choose another maximally

symmetric space and represent its group of isometries. We will focus on the flat space.
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ential and algebraic equations:

(
�−m2

)
ϕµ1...µr(x) = 0 (1.1)

∂νϕµ1...ν...µr(x) = 0 (1.2)

ϕµ1...µr(x) = ϕ(µ1...µr)(x) (1.3)

ηµ1µ2ϕµ1...µr(x) = 0 . (1.4)

This set of equations ensures that the degrees of freedom contained inside a Lorentz tensor

field of rank s are exclusively of spin s. In the massless case, things become more subtle.

A possible solution is to keep the previous set of equations, albeit form = 0, but recognize

that manifest Lorentz covariance requires gauge invariance.

ϕ′µ1...µr
(x) = ϕµ1...µr(x) + ∂(µ1ξµ2...µr−1) (1.5)

This means that a set of equations as above describes a single gauge choice, while the class

of equivalence is larger. The construction outlined here uses tensors that are irreducible

representations of the Lorentz group. Though straightforward, this is a very specific

choice, and as we will see later, it is definitely not unique.

The description of integer linear (i.e. free) higher-spin fields on-shell was carried out

in the early decades of the 20th century [14]. In 1947, it was completed by Bargmann

and Wigner [15] for all integer and half-integer-spin fields. Once the equations were

known on-shell, a Lagrangian description was sought after, additionally ignited by the

discovery of composite higher-spin particles in particle accelerators in the 60’s and 70’s.

The Lagrangian programme was completed by Singh and Hagen [16, 17], for massive

particles in 1974, and by Fang and Fronsdal [18, 19] for massless particles in 1978 .

1.2.1 Interacting theories: a first view

Even though free higher-spin fields are well described in a Lagrangian formalism, a com-

plete theory of their interactions is not known. We will focus our attention on the massless

case. A minimal set of requirements for an interacting massless higher-spin theory would

be:

• The linear part of the theory contains a description of propagation of at least one

massless field with spin>2
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• There exists an interacting part of the theory (with matter and possibly self-interacting)

• The theory has a stable vacuum

There is a straightforward way to describe how such a theory could be constructed, based

on Gupta’s idea of reconstructing General Relativity [20], formalized in [18] and named

Noether’s procedure. The advantage of this approach is having great control over the

appearing degrees of freedom. One starts with an action S2[φ] for a free field φ of spin s,

with a field independent gauge symmetry2

δξφ = ∂ξ = δ0φ . (1.6)

Deformations of the free action and the gauge symmetry with terms of higher order in

the field can now be introduced

S[φ] = S2[φ] + εS3[φ] + ε2S4[φ]... (1.7)

δξφ = δ0φ+ εδ1φ+ ε2δ2φ+ ... . (1.8)

Finally, one has to solve perturbatively the equation

δξS =ε(δ0S3 + δ1S2) + ... = 0 . (1.9)

The antifield-BRST formalism [21, 22] is expedient for consistently posing and solving

the deformation problem (see e.g. results in [23] and [24] for a review). Although this

seems quite algorithmic, it is actually very complex, and has not yet yielded a complete

result. For this reason, we will turn to an alternative way of learning about structures

which should appear in an interacting theory. The technical severity of the problem is

not the only difficulty on this path, and there are important lessons we can learn from

the "no-go" theorems.

1.2.2 No-go theorems

There exist important results, based primarily on scattering amplitudes, that constrain

the conditions for higher-spin particles to exist or interact. The name "no-go theorems"

illustrates their strength; if their assumptions are satisfied, we cannot construct inter-

acting higher-spin theories. It is important to emphasize that "no-go" does not mean
2Indices are suppressed in the following.

4



existence forbidden under any circumstances. Here we mention the most important of

these theorems and draw attention to possible circumventions of their assumptions [25].

Weinberg’s soft theorem [26] implies that in a scattering process with N external

particles where a soft (low energy with respect to energy scales involved) massless spin s

particle is also emitted, the external momenta must satisfy the following law:

N∑
i=1

g
(s)
i pµ1

i ...p
µs−1

i = 0 . (1.10)

In the case of spin 1, the equation implies charge conservation, while in the case of spin

2 it implies universality of gravitational coupling. In the case of spin 3 or higher, there is

no nontrivial solution to the above equation, implying that higher-spin particles cannot

mediate long range forces. The theorem does not forbid short range interactions. In AdS

space it does not apply since the S-matrix does not exist, and it is not yet clear how

non-locality of a conjectured higher-spin theory affects the factorization properties of the

soft amplitudes.

The Coleman-Mandula theorem [27] implies that a maximal amount of symmetry for a

field theory is a semidirect sum of the Poincaré symmetries and internal symmetries such

as ones in Yang-Mills theory. In the higher-spin symmetries, we find higher generalizations

of translations, so they would have to be ruled out by this theorem. However, one of

the crucial assumptions of this theorem is the existence of a finite number of particles

under some mass-shell, a property routinely falsified in higher-spin theories which usually

contain infinite towers of helicity states. Another possible way out comes from the fact

that spacetime symmetries are here assumed to be encoded in a Poincaré algebra, however,

one might allow for a more general extension of spacetime symmetries in the form of a

universal enveloping algebra3. It is not yet completely clear how such an approach would

work, but it would likely involve some sort of a bosonic extension of spacetime, similar to

how supersymmetry has a fermionic extension of it [25].

The Weinberg-Witten theorem [28] states that any theory which has a Lorentz co-

variant and gauge invariant energy momentum tensor cannot carry spin higher than 1.

This is already visible with the case of spin 2, where it is really impossible to construct

a gauge invariant energy momentum tensor for the linear graviton field. Nevertheless,
3A universal enveloping algebra is a vector space of higher polynomials of Lie algebra generators with

an inherited structure from the Lie bracket. In the literature, this is usually referred to as a "higher-spin

algebra" where the starting Lie algebra is an isometry algebra of a maximally symmetric space.
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this does not forbid gravitons to self-interact, and the impossibility of a gauge invariant

energy momentum tensor is considered to reflect problems in localizing the energy of the

gravitational field (see [29] for a generalization of the Weinberg-Witten theorem for the-

ories without a gauge invariant energy-momentum tensor). The theorem also hinges on

the assumption of higher-spin particles appearing in asymptotic states, which does not

forbid a non-trivial interacting theory to exist.

To proceed with a possible construction of an interacting higher-spin theory, we take

three important lessons from these theorems; the spectrum of the theory should have

an infinite number of fields of different spin, there should be some degree of non-locality

involved, and Lorentz covariance could be achieved in more ways than by conventional

irreducible finite-dimensional tensor representations. As we will see below, in our models,

these requests are not put in by hand, but are consequences of the construction.

1.2.3 Interacting theories - examples

Though the mentioned "no-go" theorems are severely constraining, positive examples

exist (a good review can be found in [25, 30]). String theory is the most advanced

theory containing states of higher-spin; in the perturbative spectrum of the theory, there

appears a tower of excitations of ever increasing spin. In [31] a conjecture was put forward

that a possible massless higher-spin theory might be an unbroken phase of string theory,

whose states above spin 2 are massive. A breaking of higher-spin symmetries might be

a mechanism by which the higher-spin particles obtain mass. String theory is thus an

example of a mathematically consistent construction which predicts higher-spins.

One very important example of an interacting higher-spin theory in flat spacetime was

created using the light-cone formalism, in which one works only with propagating degrees

of freedom. This formulation enabled finding more interaction vertices than were known

in the language of ordinary Lorentz tensors. The procedure starts with the formulation

of a free theory, then one deforms it to the next polynomial level, and demands that the

generators of the Poincaré algebra still satisfy the commutators as they did for the free

theory. The solution is known as Chiral Higher-spin Gravity [6, 32]. The interesting aspect

of this construction is a different number of positive and negative helicities (out of which

stems the name "chiral"). Recently, in [7, 33] this theory was quantized and it was shown

that the S-matrix is equal to unity, compatible with the no-go theorems. The Hamiltonian
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of Chiral Higher-spin Gravity is not Hermitian, indicating possible non-unitarity of the

theory.

In AdS space, a self interacting higher-spin theory was formulated by Vasiliev in the

late 80’s [4, 5, 34]. By choosing a constantly curved background, it was possible to directly

evade the S-matrix based no-go theorems. This construction, performed solely on-shell,

starts by utilizing the higher-spin algebra, rather than Fronsdal fields, and promotes the

symmetry to be local.

The Lie algebra of isometries of AdS space [35] is

i[Pm, Pn] =− Λ2Mmn (1.11)

i[Mmn, Pr] =ηnrPm − ηmrPn (1.12)

i[Mmn,Mrs] =ηmsMnr − ηmrMns + ηnrMms − ηnsMmr , (1.13)

where Mmn are Lorentz generators and Pm are the AdS deformed translation generators,

from which the higher-spin algebra hs(4) is formed; an associative algebra of polynomials

in the generators modulo a two sided ideal generated by the Lie algebra of isometries.

This amounts to an algebra of polynomial operators in a certain ordering

M̂a1···as−1,b1···bt ∼ (Mab)
t (Pa)

s−1−t . (1.14)

Similar to Cartan’s formulation of gravity, two fields are introduced which are valued in

the higher-spin algebra, and full nonlinear equations are provided by the so called unfolded

formalism.

There are some exact solutions known and it is true that the linearized part of the

theory describes free higher-spin fields propagating on AdS space. It is also very useful

in case of AdS/CFT correspondence, and recently twistors were explored as its possible

geometric setting [36]. Apart from physical aspects, the mathematics of this theory are

interesting in itself.

Nevertheless, Vasiliev’s theory is far from being entirely desirable. The language in

which it is described is very far from the language of field theory, which makes it quite

inaccessible. There is no action provided so it is not clear how to quantize it. It is

formulated in AdS, without a regular limit to flat space (in simple terms, the theory

contains higher derivatives weighted by the cosmological constant). It was originally

thought to be local, but recently this has been seriously questioned [37], and although there
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are ongoing debates about the degree of non-locality, it is safe to say that a conventional

notion of locality is not present.

1.3 Outline of the thesis

Differently from the examples described above, we will base our construction on a utiliza-

tion of higher-spin-like symmetries of matter, which will be defined precisely below. In

chapter 2, we will describe how a gauging procedure can be formulated in an extended

manifold called the master space using the Moyal product. We will build a gauge theory

analogous to Yang-Mills theory, state its properties and show how to formulate it in a

more general way, manifestly displaying covariance with respect to the symmetry found

through the gauging procedure. Following [8], we will show that the built model admits

an L∞ structure.

In chapter 3 we will construct a novel representation of the Lorentz group on the space

of multi-dimensional Hermite functions. The results of chapter 3 are general and can be

used directly even in contexts different from the work in this thesis, without reference to

other chapters.

In chapter 4, we will analyze the spectrum of the theory for which the newly developed

unitary representation of the Lorentz group will be used. It will be shown that the

theory contains states of arbitrarily high helicity, but furthermore, that the master space

formalism supports a description of infinite-spin particles.

In chapter 5 we will analyze the symmetries and conservation laws in our model,

and put forward further candidate theories based on the discovered gauge symmetry. A

connection to the matrix models will be highlighted.

In chapter 6 we will formulate a matter sector and describe possible ways of coupling

matter to our gauge field. Tree-level scattering amplitudes for matter mediated by our

gauge field will be calculated.

In chapter 7 we will focus on the low-spin (s ≤ 2) sector of our theory and find that it

induces a geometric picture with similarities to teleparallel geometry. This relation will

be studied in more detail, and we will provide specific solutions to the field equations of

the low-spin sector.

The final chapter 8 contains an overview of the presented material with comments on
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possible uses and future work.

The bulk of the thesis contains original work, apart from the small introductions on

the L∞ algebras in field theory, Wigner’s classification and teleparallel geometry reported

from existing literature. The appendices contain a review of mathematical tools used in

calculations based on literature cited therein, as well as some details of the calculations

in various chapters.
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Chapters 2, 5, 6 and 7 are based on [1]:

• "Gauging the Higher-Spin-Like Symmetries by the Moyal Product"

M. Cvitan, P. Dominis Prester, S. G. Giaccari, M. Paulišić, I. Vuković

JHEP 06 (2021) p.144, arXiv: 2102.09254

Parts of chapter 4 are based on [2]:

• "Gauging the Higher-Spin-Like Symmetries by the Moyal Product"

M. Cvitan, P. Dominis Prester, S. G. Giaccari, M. Paulišić, I. Vuković

Symmetry 13.9 (2021) p.1581

Chapter 3, a major part of chapter 4 and section 7.3 contain work not yet published.
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of the L∞ structure was in [3]:
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L. Bonora, M. Cvitan, P. Dominis Prester, S. G. Giaccari, M. Paulišić, T. Štemberga

JHEP 04 (2018) p. 095, arXiv: 1802.02968
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Chapter 2

Moyal Higher Spin Theory - origins and

construction

In this chapter we describe how higher spin symmetries of matter fields can be utilized in

a gauging procedure. To make the problem manageable we reformulate a sample model

of matter in a new language by employing a Hilbert space description of matter and the

Wigner-Weyl correspondence, and then formulate the Moyal Higher Spin (MHS) gauge

field model on an extended manifold called the master space. We construct a Yang-Mills

like theory using the newly developed concepts, show that it is classically perturbatively

stable and display how the MHS structure allows for an even more general formulation.

Finally, we show how the MHS Yang-Mills theory admits a description through the L∞

algebra.

2.1 Higher-spin symmetries and the master space

formulation

To make use of the gauging procedure we will examine global symmetries of a free complex

massive scalar field, described by an action

S[φ] =
1

2

∫
ddx

(
∂µφ∂

µφ† −m2φφ†
)
. (2.1)

Apart from the usual U(1) symmetry, and the symmetry under translations, this action

is symmetric under a whole tower of ever higher derivative symmetries which can be

11



collected together in the following manner

δεφ(x) =
∞∑
n=0

(−i)n+1εµ1...µn ∂µ1 · · · ∂µnφ(x) , (2.2)

where εµ1...µn are completely symmetric constant Lorentz tensors, each of rank n. Fo-

cusing the attention on the particular choice n = 0 (δεφ(x) = −iεφ(x)) we can rec-

ognize the infinitesimal form of the U(1) gauge symmetry, while the choice n = 1

((δεφ(x) = −εµ∂µφ(x))) describes rigid spacetime translations. Higher rank cases are

named higher spin symmetries, with rank n corresponding to spin s = n+ 1. The signifi-

cance of particular cases in (2.2) in constructing interaction terms between bosonic higher

spin fields was first elucidated in [38], while the relation to the higher-spin algebra was

explained in [39].

There is a well-known textbook trick (see e.g. [40]) to find about the existence and

gauge symmetry of a gauge field which consists in promoting a transformation param-

eter as in (2.2) to a function on spacetime (localizing or gauging the symmetry), while

demanding that the symmetry of the action be preserved - the particular case of n = 0

leads to the Maxwell field. Analogous procedures can be done for the n > 1 cases1. There

is, however, a strong argument that the gauging procedure is inconsistent if only a single

localized higher-spin symmetry is used. Consider the commutator of variations generated

by n = 2 (s = 3) parameters εµν1 (x) and εµν2 (x):

[δε1 , δε2 ]φ =
(
εαβ2 ∂α∂βε

µν
1 − ε

αβ
1 ∂α∂βε

µν
2

)
︸ ︷︷ ︸

s=3

∂µ∂νφ

+ 2
(
εµν2 ∂µε

αβ
1 − ε

µν
1 ∂µε

αβ
2

)
︸ ︷︷ ︸

s=4

∂ν∂α∂βφ (2.3)

Even though the initial variations belonged to the case s = 3, the commutator contains

s = 4 type transformations so the symmetry algebra is not closed. This problem is non-

existent only for the cases of s = 1 and s = 2, meaning that any consistent higher-spin

construction necessarily needs to encompass the whole tower already written down in

(2.2).

The gauging procedure starts by promoting the parameters εµ1...µn to functions on

spacetime, but this direct approach might not be the best. To make this problem tractable,
1When n > 1 one speaks of true higher spin symmetries, while n = 0, 1 are usually referred to as low

spin symmetries. We will refer to the whole tower 2.2 as higher spin even though the low spin cases are

included.
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we need to reformulate both the free scalar field action and the variations in a new language

and consequently define the master space.

2.1.1 Hilbert space formulation

Any quadratic action such as (2.1) can formally be rewritten [41, 42] as a quadratic form

S[φ] =
1

2
〈φr| K̂rs |φs〉 , (2.4)

where the vectors |φr〉 span a Hilbert spaceH. The vectors are related to the field variables

as φr(x) = 〈x|φr〉 where r can stand for any internal or Lorentz indices. With a complete

set of operators acting on H

[x̂a, ûb] = iδab , [x̂a, x̂b] = 0 = [ûa, ûb] , (2.5)

we can build the (kinetic) operator

K̂ = ηabûaûb −m2 , (2.6)

and prove by inserting a completeness relation
∫
ddx |x〉 〈x| that (2.4) is equal2 to (2.1)

S[φ] =
1

2

∫
ddx 〈φ|

(
|x〉 〈x| ηabûaûb −m2

)
|φ〉 (2.7)

=
1

2

∫
ddx

(
∂aφ∂

aφ† −m2φφ†
)
. (2.8)

It is now easy to manifestly display symmetries of the action (2.4) [41, 42, 43, 3]

S[φ] =
1

2
〈φr| Û Û−1K̂rsÛ Û

−1 |φs〉 . (2.9)

With Û = exp(−iÊ) and Ê a hermitean operator we see that the linearized symmetry

transformations are

δε |φ〉 = iÊ |φ〉 , δε 〈φ| = −i 〈φ| Ê (2.10)

δK̂rs = i[Ê , K̂rs] . (2.11)

To reproduce the higher-spin transformations (2.2) we choose

Ê(û) =
∞∑
n=0

εµ1...µnûµ1 . . . ûµn (2.12)

2Convenient rules are ûa |x〉 → i∂xa |x〉 , 〈x| ûa → −i∂xa 〈x|, being careful that these derivatives act on

the full scalar product, i.e. 〈x| ûaûb |y〉 = i(−i)∂xa∂
y
b δ(x− y).
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through which it is confirmed

δεφ(x) = 〈x| i Ê(û) |φ〉 (2.13)

=
∞∑
n=0

(−i)n+1εµ1...µn ∂µ1 · · · ∂µnφ(x) . (2.14)

Note that (2.12) is a choice, while the symmetry transformation operator can be a general

function Ê(û) depending on operators ûµ.

2.1.2 Master space formulation

For the next step we will use the Wigner map and its inverse the Weyl map, which are

defined and summarized in appendix A.2. We rewrite the matter action (2.4) as

S[φ] =
1

2
〈φ| K̂ |φ〉 =

1

2
tr
(
K̂ |φ〉 〈φ|

)
. (2.15)

Since on the Hilbert space H we have defined a complete set of operators x̂a, ûb, we can

perform the Wigner map (A.21) on the action (2.15), which takes a Hilbert space operator

and maps it to a function over a manifold resembling a phase space of a point particle,

with coordinates xa, ub which we call the master space. A product of operators is by

(A.27) mapped to a Moyal ?-product of functions, and the trace of an operator is mapped

to an integral over the complete master space. For the kinetic operator we obtain∫
ddq 〈x− q

2
|ηabûaûb −m2|x+

q

2
〉eiq·u = ηabuaub −m2 , (2.16)

while the projector |φ〉 〈φ| is mapped to the Wigner function∫
ddq 〈x− q

2
|φ〉 〈φ|x+

q

2
〉 eiq·u =

∫
ddq φ(x− q/2)φ†(x+ q/2) eiq·u

=(2π)dφ(x) ? δd(u) ? φ†(x) , (2.17)

where Moyal’s star product ? is defined by

a(x, u) ? b(x, u) =a(x, u) exp

[
i

2

(←
∂ x ·

→
∂u −

→
∂ x ·

←
∂u

)]
b(x, u) . (2.18)

The definition and properties of the Moyal product are given in appendix (A.1). The

easiest way to prove that (2.17) is the Wigner function is by using the property (A.14)
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and to work backwards

(2π)dφ(x) ? δd(u) ? φ†(x) =

∫
ddq φ(x) ? eiqu ? φ†(x)

=

∫
ddq φ(x) ?

[
eiquφ†(x+

q

2
)
]

=

∫
ddq φ(x− q

2
) eiquφ†(x+

q

2
) . (2.19)

Finally, the master-space form of the scalar field action is

S[φ] =
1

2

∫
ddx

ddu

(2π)d
(ηabuaub −m2) ? Wφ(x, u) (2.20)

where x are spacetime coordinates and u are auxiliary coordinates of the same dimen-

sionality. The master space is thus a non-commutative, 2d-dimensional manifold where

the non-commutativity is encoded in the Moyal commutators

[xa ?, ub] = iδab , [xa ?, xb] = 0, [ua ?, ub] = 0 . (2.21)

Note that the spacetime coordinates and auxiliary space coordinates remain commutative

between themselves. Under Lorentz transformations, the coordinates transform as

xa → Λa
bx
b, ua → Λa

bub (2.22)

to keep the Moyal product Lorentz invariant.

The symmetry transformations (2.10) lead us to conclude that for the case of (2.12)

the kinetic term is unchanged. The projector |φ〉 〈φ| which maps to the Wigner function

has the following transformation properties according to (2.10)

δε (|φ〉 〈φ|) = i[Ê , |φ〉 〈φ|] (2.23)

from which through the Wigner map we conclude that the Wigner function transforms as

a Moyal commutator

δεWφ(x, u) = i[Wφ(x, u) ?, ε(u)] . (2.24)

At this point we additionally emphasize that ε(u) is a general function of u, while a

polynomial expansion similar to (2.12) could be made to make contact with a conventional

approach to higher-spin symmetries. We will proceed in the more general point of view,

but for completeness of the argument we note that a parameter ε(u) of the form

ε(u) =
∞∑
n=0

εµ1...µn uµ1 . . . uµn . (2.25)
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reproduces the transformations (2.2, 2.14).

Gauging the symmetry amounts to promoting the symmetry parameters from rigid

to local. In our setting, a rigid symmetry is described by a parameter depending solely

on auxiliary coordinates u, while a local symmetry parameter has a dependence also on

spacetime coordinates x. For simplicity, we set m = 0 in the matter action (2.20).

S =
1

2

∫
ddx ∂µφ ∂

µφ† =
1

2

∫
ddx dduua ? Wφ ? ua . (2.26)

For a rigid parameter ε(x, u) = ε(u) we indeed have a symmetry since3

δS = i

∫
ddx ddu

1

2
([ua ?, Wφ ? ε ? ua] + [ε ?, ua] ? {Wφ

?, ua}) .

The first term is discarded as a Moyal commutator is a total derivative both in x and

u coordinates, and the second term vanishes since ε = ε(u), and a Moyal commutator

between only auxiliary space variables vanishes.

In case where the gauge parameter ε = ε(x, u) is also a function of x, the second term

above does not vanish. If we demand that symmetry be preserved we must introduce a

compensating vector field ha(x, u).

S =
1

2

∫
ddx ddu (ua + ha) ? Wφ ? (ua + ha) . (2.27)

The variation of the action becomes:

δS =
1

2

∫
ddx ddu

(
δha ? {Wφ

?, (ua + ha)}+ i(ua + ha) ? Wφ ? ε ? (ua + ha) (2.28)

− i(ua + ha) ? ε ? Wφ ? (ua + ha)
)
. (2.29)

Following the logic above and discarding the boundary terms we obtain:

δS =
1

2

∫
ddx ddu (δha + i[ε ?, (ua + ha)]) ? {Wφ

?, (ua + ha)}

from which we conclude that the action is locally invariant if the compensating field has

the following infinitesimal transformation law:

δεha(x, u) = ∂aε(x, u) + i[ha(x, u) ?, ε(x, u)] . (2.30)

This gauge symmetry made its first appearance in [3] as a symmetry of an action with a

linear coupling of a tower of higher-spin fields to a Dirac fermion. A similar construction
3To see this add and subtract +Wφ ? ε ? ua ? u

a −Wφ ? ε ? ua ? u
a + ε ? ua ?Wφ ? u

a − ε ? ua ?Wφ ? u
a

and use cyclicity of the Moyal product under integration.
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employing a linear coupling of a tower of higher spin fields to a massive scalar field

was examined in [44, 43], whose results in the language of this chapter are presented in

appendix B.1.

A most important feature of the master space construction is that the Lie algebra of

symmetries is closed, as we can check

[δε1 , δε2 ]Wφ(x, u) = i[δε1Wφ(x, u) ?, ε2(x, u)]− i[δε2Wφ(x, u) ?, ε1(x, u)] (2.31)

= −[[Wφ(x, u) ?, ε1(x, u)] ?, ε2(x, u)] + [[Wφ(x, u) ?, ε2(x, u)] ?, ε1(x, u)] (2.32)

= i[Wφ(x, u) ?, i[ε1(x, u) ?, ε2(x, u)]] . (2.33)

We conclude that the Lie algebra of (local) symmetries is non-abelian and infinite dimen-

sional. The Lie bracket is provided by the Moyal commutator

[δε1 , δε2 ] = δi[ε1?,ε2] . (2.34)

Through the reformulation of the matter model in the master space and the gauging

procedure we have learned of the existence and gauge transformation properties of the

master field ha(x, u). We take the master space as the stage on which we will build our

model, with the algebra of functions realized with the Moyal product. We will call the

symmetry transformations such as (2.24, 2.30) Moyal Higher Spin (MHS) transformations

and define the master space fields according to possible transformation rules:

• Fundamental representation (infinitesimal parameter ε(x, u))

δεχ(x, u) ≡ −i ε(x, u) ? χ(x, u) (2.35)

• Fundamental representation (finite parameter e−i E(x,u)
? )4

φE(x, u) = e−i E(x,u)
? ? φ(x, u) (2.37)

• Adjoint representation (infinitesimal parameter ε(x, u))

δεA(x, u) = −i [ε(x, u) ?, A(x, u)] (2.38)
4The ?-exponential function is naturally defined as

e
a(x,u)
? =

∞∑
n=0

1

n!
a(x, u)?n . (2.36)

More details can be found in appendix A.1
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• Adjoint representation (finite parameter e−i E(x,u)
? )

AE(x, u) = e−i E(x,u)
? ? A(x, u) ? ei E(x,u)

? . (2.39)

A simple application of the Baker-Campbell-Hausdorff lemma guarantees that the large

MHS transformations form a group, since it is always possible to find a solution E(x, u)

such that

e−iE(x,u)
? = e−i E1(x,u)

? ? e−i E2(x,u)
? (2.40)

while the inverse is then obtained as

(
e−i E(x,u)
?

)−1
= ei E(x,u)

? . (2.41)

2.2 MHS gauge potential and the Yang-Mills model

One way of discovering the master space gauge field ha(x, u) and its infinitesimal transfor-

mation properties was described in the previous section. Once we are equipped with the

Moyal product and functions on the master space, we can independently follow the steps

of the Yang Mills construction and generalize the previous conclusions. The conventional

YM gauge field is a Lie Algebra valued 1-form h(x) defined on spacetimeM which serves

as a connection with transformation properties

hg(x) = g(x)h(x)g(x)−1 − ig(x)dg(x)−1 (2.42)

with d the exterior derivative. In our case the group elements g(x), which usually carry

values of the Lie algebra, are functions on the master space, generating the MHS transfor-

mations. The same conclusion stands for the gauge field and we can define the connection

transformation properties as

hEa(x, u) ≡ e−i E(x,u)
? ? ha(x, u) ? ei E(x,u)

? − ie−i E(x,u)
? ? ∂xae

i E(x,u)
? . (2.43)

The definition above is compatible with the infinitesimal transformation properties found

in the gauging procedure. If we expand each e−i E(x,u)
? with E(x, u) = ε(x, u) to emphasize

linearization, and keep only linear terms in (2.43), it becomes

δεha(x, u) = ∂xaε(x, u) + i [ha(x, u) ?, ε(x, u)] (2.44)
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identical to (2.30). We must keep in mind that the natural coordinates of the master

space are xa, ub, thus, under Lorentz transformations, the MHS potential transforms as

h′a(x
′, u′) = Λa

bhb(x, u) (2.45)

where

x′a = Λa
bx
b, u′a = Λa

bub . (2.46)

We can rewrite (2.45) as an active transformation and employ a matrix notation in the

arguments with (Λ−1 · x)a = (Λ−1)abx
b and (u · Λ)a = ubΛ

b
a to obtain

h′a(x, u) = Λa
bhb(Λ

−1 · x, u · Λ) . (2.47)

The combination of the exterior derivative and the connection gives us the covariant

derivative. The requirements for its definition are that (i) it is gradient linear, (ii) maps

tensors into tensors, (iii) obeys the Leibniz rule and (iv) it is the inverse of the integral,

which in our context for a covariant derivative denoted by D?a means∫
ddx dduD?aAa...(x, u) = (boundary terms) . (2.48)

This leads us to the definition

D?a ≡ ∂xa + i[ha(x, u) ?, ] . (2.49)

The field strength (curvature) can now be defined as the covariant derivative of the gauge

potential, which leads to

Fab(x, u) = ∂xahb(x, u)− ∂xb ha(x, u) + i [ha(x, u) ?, hb(x, u)] . (2.50)

Under MHS transformations we obtain expected transformation properties for infinitesi-

mal transformations

δεFab(x, u) = i [Fab(x, u) ?, ε(x, u)] . (2.51)

and equally expected for finite transformations

F Eab(x, u) = e−i E(x,u)
? ? Fab(x, u) ? ei E(x,u)

? . (2.52)

The Bianchi identity follows directly:

D?[aFbc](x, u) =∂[a∂bhc](x, u)− ∂[a∂chb](x, u)

+ i[∂[ahb(x, u) ?, hc](x, u)] + i[h[b(x, u) ?, ∂ahc](x, u)]

+ i[h[a(x, u) ?, ∂bhc](x, u)]− i[h[a(x, u) ?, ∂chb](x, u)]

− [h[a(x, u) ?, [hb(x, u) ?, hc](x, u)]] = 0 , (2.53)
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where also the Jacobi identity for the Moyal product (A.11) was used.

An expected property of the field strength is that it measures the triviality of the

configuration.

h is pure gauge ⇐⇒ F = 0 . (2.54)

This can be proven in the similar fashion as it is usually done in standard YM theory, using

the fact that the Moyal product satisfies the algebraic properties of matrix multiplication.

The proof of (2.54) is presented in Appendix B.3.

We now define the Moyal Higher Spin Yang-Mills (MHSYM) action as

Sym =− 1

4g2
ym

∫
ddx dduF ab(x, u) ? Fab(x, u)

=− 1

4g2
ym

∫
ddx dduF ab(x, u)Fab(x, u) + (boundary terms) . (2.55)

The indices a, b, ... are raised, lowered and contracted with the Minkowski metric ηab. The

presence of the Moyal star product, both explicitly and in the definition of the curvature

tensor introduces higher derivatives into the action, making it weakly non-local5. There

are at most quartic terms describing interactions. The boundary terms are irrelevant

when equations of motion are sought for, but one has to be careful not to discard them

when searching for conservation laws as we will examine in chapter 5. Due to the non-

commutativity of the Moyal product, one should in general distinguish between the "left"

and "right" functional derivatives of master space functionals

δLA[h, ψ] =

∫
ddx ddu δha ?

δLA

δha
, δRA[h, ψ] =

∫
ddx ddu

δRA

δha
? δha (2.56)

but on places where it does not make a difference, we will omit an explicit subscript, such

as is the case when searching for equations of motion. For the MHSYM action the EoM

for the master space field ha(x, u) are

2xha − ∂xa∂xb hb + i
(
2[hb ?, ∂xb ha]− [hb ?, ∂

x
ah

b] + [∂xb h
b ?, ha]

)
+
[
hb ?, [ha ?, hb]

]
= 0

(2.57)

or written compactly

D?aF ba(x, u) = 0 . (2.58)
5A weak notion of non-locality entails higher derivatives appearing in the action in an unbounded

order. A strong non-locality would entail operators such as 1
2
, and we do not encounter such operators

in our theory.
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Properties of the MHSYM model

In the next section, we will move to a more general construction of a gauge field theory

in the master space. At this point, we emphasize some of the basic properties of the

MHSYM model.

Apart from the MHS symmetry, the action (2.55) is invariant under the following

transformations

h′a(x
′, u′) = Λa

b hb(x, u) , x′µ = Λµ
ν x

ν + ξµ , u′µ = Λµ
ν uν + τµ (2.59)

where Λ are Lorentz matrices and ξµ and τµ are arbitrary constant vectors. The Lorentz

transformations acting in spacetime and the auxiliary space must be the same in order

to keep the Moyal product invariant. We see that besides the standard Poincaré group

(Λ, ξ) of spacetime isometries, there is also an independent group of translations in the

auxiliary space. In chapter 6 we will show that a matter sector may break the auxiliary

space translation symmetry.

The master field can be restricted to an odd function in the auxiliary space

ha(x,−u) = −ha(x, u) . (2.60)

Indeed, it is easy to show that HS transformations are compatible with this if the MHS

parameter is also restricted to be odd

ε(x,−u) = −ε(x, u) . (2.61)

Using the expansion (2.25) it follows that this restriction corresponds to gauging only

spin-even rigid HS transformations.

The dimension of the MHS potential is (length)−1 so the dimension of the coupling

constant gym is (length)−2 for all d. It appears that the MHSYM theory has a scale,

which we denote by `h, already at the classical level. However, we shall show in chapter 5

that the theory in the classical regime does not have an intrinsic scale and that the scale

symmetry is spontaneously broken by the choice of the vacuum. To make contact with

the canonical formalism it is natural to pass to the dimensionless auxiliary coordinates ū

and a rescaled coupling constant ḡh and the MHS potential h̄a, defined by

ū = `hu , ḡym = `
d/2
h gym , h̄a = ha/ḡym . (2.62)

21



The dimension of ḡym is (length)
d
2
−2, the same as in the standard Maxwell or Yang-Mills

theories, and in d = 4 it is zero. In the canonical normalization cubic terms and quartic

terms in the action have the coupling given by ḡym`
D−1
h and ḡ2

ym`
D
h , respectively, where D

is the total number of spacetime derivatives in a given monomial.

An essential property of the MHSYM model is the stability of the vacuum solutions.

Since ha(x, u) = 0 is a solution of (2.57) we can examine the behavior of the theory in

the linear regime where we keep only quadratic terms in the action. To that end, the

curvature tensors become

F
(2)
ab = ∂ahb(x, u) + ∂bha(x, u) (2.63)

and the linearized action is given by

S(2)
ym =− 1

4g2
ym

∫
ddx dduF (2)ab(x, u)F

(2)
ab (x, u) . (2.64)

The action is formally similar to the one for the Maxwell theory, so we can immediately

obtain the expression for the spatial energy density

U ≈ 1

2g2
ym

∫
dd−1x

∫
ddu

(∑
j

F0j(x, u)2 +
∑
j<k

Fjk(x, u)2

)
(2.65)

which is manifestly positive definite6 and vanishes only for ha(x, u) = 0 (and gauge related

configurations). We see that ha(x, u) = 0 is a perturbatively stable vacuum in the clas-

sical MHSYM theory. There are no runaway modes in the linearized regime, though one

cannot exclude the possibility of their existence in the full theory, due to its non-locality

and non-linearity. We have to impose on the MHS potential proper fall-off conditions at

the boundary (infinity) of the auxiliary space to make sure that the action and observ-

ables such as energy and momentum are well-defined. This will be a decisive factor for

determining the particle spectrum of the theory.
6The terms in the sum are ordinary squared, i.e. not by using the Minkowski metric. The energy

density displays the same form as in Maxwell’s theory u = 1
2

(
ε0E

2 + 1
µ0
B2
)
, albeit with an additional

auxiliary space integration.
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2.3 MHS Covariant formulation

2.3.1 MHS tensors

The MHS structure offers even a richer formalism than the one encountered in the Yang-

Mills like formulation. We use a formal similarity with non-commutative field theories

to borrow some of the techniques, and show that there exists a covariant frame-like for-

mulation, important in understanding the emergent geometrical description described in

chapter 7. As we will show, it also offers a better starting point for a background inde-

pendent formulation and a direct relation to matrix models.

In the YM-like approach the basic object that covariantly transforms, in the adjoint

representation, under MHS transformations is the MHS master field strength, see (2.52).

Any master field A(x, u) transforming in the same way, which is

AEab···(x, u) = e−i E(x,u)
? ? Aab···(x, u) ? ei E(x,u)

? (2.66)

we call an MHS tensor. In general it can have any number of Lorentz indices (denoted

by Latin letters a, b, . . .), on which MHS transformations do not act. For the moment

we assume a flat background and trivial frames, so that Lorentz indices are raised and

lowered with the Minkowski metric tensor. For infinitesimal MHS transformations this

gives the MHS variation

δεAa···(x, u) = i [Aa···(x, u) ?, ε(x, u)] . (2.67)

The important property of MHS tensors is that the Moyal product of MHS tensors is

again an MHS tensor. This is a trivial consequence of (2.66) and (2.41).

AE(x, u) ? BE(x, u) =e−i E(x,u)
? ? A(x, u) ? ei E(x,u)

? ? e−i E(x,u)
? ? B(x, u) ? ei E(x,u)

? (2.68)

=e−i E(x,u)
? ? A(x, u) ? B(x, u) ? ei E(x,u)

? (2.69)

2.3.2 MHS vielbein

In standard YM gauge theories, to construct a covariant object from the gauge potential

we need to take a derivative, which leads to constructing the gauge field strength. Non-

commutativity of the MHS structure allows us to construct an MHS tensor without using

derivatives, in the following way

ea(x, u) ≡ ua + ha(x, u) . (2.70)
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Using (2.44) it is easy to show that ea(x, u) transforms under MHS variations as

δεea(x, u) = i [ea(x, u) ?, ε(x, u)] . (2.71)

which is exactly the rule for the adjoint transformation law (2.67). The presence of such

an object is not unexpected from the viewpoint of NC field theories (a closely related

concept are covariant coordinates in non-commutative field theory [45], with an important

difference being that in our case, spacetime remains commutative). By using ea(x, u)

instead of the MHS potential ha(x, u) we can write all equations in the MHS gauge sector

in a manifestly MHS covariant way (i.e., by using exclusively MHS tensors), a feat not

possible in the standard YM theories.

We refer to ea(x, u) as the MHS vielbein. As we examine in more detail in chapters 4

and 7, it is sometimes useful to consider a Taylor expansion in the auxiliary coordinates

ea(x, u) =
∞∑
n=0

e(n)µ1...µn
a (x)uµ1 · · ·uµn . (2.72)

As with the higher spin symmetries (2.2), we call the n-th order term a spin n+1 spacetime

component. If we perform a gauge transformation with a parameter containing only the

s = 2 contribution ε(x, u) = εµuµ, the spin-2 (n = 1) spacetime component of (2.72)

transforms under the MHS transformations as a vector frame under diffeomorphisms

δεea
(1)µ = ea

(1)ν∂νε
µ − εν∂νea(1)µ . (2.73)

When coupled to spacetime matter, this vector frame plays the role of the vielbein, as

shown in chapter 6. This is the origin of the name MHS vielbein.

This expansion also illuminates the meaning of (2.70) and the preferred background

it represents. Performing Taylor expansions (2.72) and equally

ha(x, u) =
∞∑
n=0

h(n)µ1···µn
a (x)uµ1 . . . uµn . (2.74)

one obtains that the corresponding spacetime fields are connected through

e(n)µ1...µn
a (x) = h(n)µ1...µn

a (x) , n 6= 1 (2.75)

and what corresponds to a vector frame is

e(1)µ
a (x) = δa

µ + h(1)µ
a (x) . (2.76)

24



Through the vielbein interpretation we realize that (2.70) defines the MHS potential with

respect to the empty Minkowski background

ea = ua ≡ δµauµ . (2.77)

This is not surprising, but it shows the limits of practical usability of (2.70). We can

again see that the MHS vielbein is the fundamental object in the theory, and that (2.70)

is sensible only if we are interested in expansions around the empty Minkowski vacuum.

Strictly speaking, to identify e
(1)µ
a (x) as a spacetime vielbein, an invertibility con-

dition should be imposed. This condition is apparently not required in the MHS for-

malism, which opens the possibility of accommodating configurations and phases with

non-geometric interpretations.

2.3.3 MHS covariant derivative and torsion

We have already seen in (2.49) that the covariant derivative is defined as

D?a = ∂xa + i [ha(x, u) ?, ] (2.78)

and that it fulfills all the requirements for a covariant derivative when acting on an MHS

tensor. Using (2.70) we obtain that the background independent formulation of (2.78) is

given by

D?a = i [ea(x, u) ?, ] . (2.79)

This form is not only more generic but also usually more convenient for performing cal-

culations. Note that we can write the MHS variation of the MHS vielbein in a manifestly

covariant form as

δεea(x, u) = D?a ε(x, u) . (2.80)

Having defined the MHS vielbein and covariant derivative a natural object to construct

is

Tab(x, u) ≡ D?a eb(x, u) = i [ea(x, u) ?, eb(x, u)] (2.81)

which is an antisymmetric MHS tensor

Tab(x, u) = −Tba(x, u) . (2.82)

As we show in chapter 7, the Moyal bracket in the spin-2 sector behaves as the Lie

bracket of vector fields. It then follows from (2.81) that Tab can be interpreted both as
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the generalized anholonomy and the generalized torsion.7 We shall refer to it as the MHS

torsion. Expanding around the flat background (2.70), we get

Tab(x, u) = ∂xahb(x, u)− ∂xb ha(x, u) + i [ha(x, u) ?, hb(x, u)] (2.84)

which is the MHS field strength obtained in the YM-like construction and defined in

(2.50). Our convention is to use the symbol Tab in generic situations, and the symbol Fab

when (2.70) is meaningful.

A particularly interesting feature of the covariant MHS formulation is that there are

no further independent MHS tensors which we could define motivated by a geometric

analogy. In differential geometry the Riemann tensor is extracted from the commutator

of covariant derivatives. The commutator of MHS covariant derivatives, acting on an

arbitrary MHS tensor, gives

[D?a ,D?b ]Ac...(x, u) = i [Tab(x, u) ?, Ac...(x, u)] (2.85)

thus it is defined by the MHS torsion. As a special case,

[D?a ,D?b ] ec(x, u) = D?cTba(x, u) (2.86)

from which we see that there is no extra independent structure in our formalism cor-

responding to the generalized Riemann tensor. Using the Jacobi identity (A.11) it is

straightforward to show that the MHS torsion satisfies the MHS Bianchi identity,

D?a Tbc(x, u) +D?b Tca(x, u) +D?c Tab(x, u) = 0 (2.87)

which is the same as (2.53).

Note that by putting Ac...(x, u) = ε(x, u) in (2.85) we can write the MHS variation of

the MHS torsion as

δεTab(x, u) = [D?a ,D?b ] ε(x, u) (2.88)

=D?a δεeb(x, u)−D?b δεea(x, u) . (2.89)
7The latter is obvious when we write Tab in the following form

Tab = D?a eb(x, u)−D?b ea(x, u)− i [ea(x, u) ?, eb(x, u)] . (2.83)
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2.3.4 The MHS metric

The simplest HS tensor without frame indices in our formalism is

g(x, u) ≡ ea(x, u) ? ea(x, u) . (2.90)

For the obvious reason we call it the MHS metric. If we use (2.72) and a similar Taylor

expansion for the MHS metric

g(x, u) =
∞∑
s=0

gµ1...µs
(s) (x)uµ1 · · ·uµs (2.91)

it follows from (2.90) that the s = 2 component is given by

gµν(2)(x) = ηabe(1)µ
a (x) e

(1)ν
b (x) + (HS contributions) (2.92)

where every monomial in "(HS contributions)" contains field(s) e(n)µ1...µn
a (x) with n ≥ 2,

which is spin ≥ 3. Up to spin s > 2 contributions, this is exactly the relation between a

metric and a vielbein in standard differential geometry.

If we expand the MHS vielbein as in (2.70), then the natural way to expand the HS

metric is

g(x, u) ≡ u2 + h(x, u) . (2.93)

Taylor expanding both sides around u = 0, we get for s 6= 2

gµ1...µs
(s) (x) = hµ1...µs

(s) (x) , s 6= 2 (2.94)

and for s = 2

gµν(2)(x) = ηµν + hµν(2)(x) . (2.95)

We see that the MHS field h(x, u) measures the deviation from the flat background. Using

(2.90), (2.93) and (2.71) we get the MHS variation of h(x, u)

δεh(x, u) = 2(u·∂x)ε(x, u) + i [h(x, u) ?, ε(x, u)] (2.96)

which is exactly the variation found in [44, 43] in the analysis of MHS symmetries of

the free Klein-Gordon field linearly coupled to the infinite tower of spacetime HS fields.

In [44, 43] it was argued that h(x, u) should be a composite field, and here we made it

explicit. In chapter 6 we show that h(x, u) indeed is the field which couples minimally to

the Klein-Gordon field in the MHS formalism. Using (2.90), (2.93) and (2.70) we obtain

h(x, u) = 2uaha(x, u) + ha(x, u) ? ha(x, u) . (2.97)
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In particular the s = 0 component of h(x, u), which provides seagull vertices for s ≥ 1

interactions when coupled to a Klein-Gordon field, is

h(0)(x) = ha(x, u) ? ha(x, u)
∣∣∣
u=0

. (2.98)

The MHS covariant derivative is not metric-compatible since

Qa(x, u) ≡ D?ag(x, u) = i [ea(x, u) ?, g(x, u)] (2.99)

is generally not vanishing. We refer to the HS tensor Qa(x, u) as the MHS nonmetricity

tensor. The underlying geometry in our construction appears not to be of the Riemann-

Cartan type. Note that the MHS nonmetricity tensor (2.99) can be written as

Qa(x, u) = {eb(x, u) ?, Ta
b(x, u)} (2.100)

i.e., it is completely determined by the MHS torsion.

To summarize, the geometry emerging in the MHS theory has all fundamental tensors

(torsion, Riemann tensor and nonmetricity) non-vanishing. While the geometry may look

exotic at a first glance, it is in fact closely related to the teleparallel geometry. In chapter

7 we study in detail the spin-2 sector, and show that the emergent linear connection is

opposite8 to the Weitzenböck connection.

2.4 L∞ structure of the MHS model

It was conjectured in [8] that any classical, perturbatively defined field theory can be

described by an appropriate L∞ algebra, a vast generalization of Lie algebras, which

we will soon define. This is an exciting prospect, which gives hope into identifying the

crucial recipes for field theory, abstracting away from any specific ingredients. Further

merit to this conjecture can be found through the dual relationship of L∞ algebras and

the Batalin-Vilkovisky formalism [47]. Examples are plentiful and we refer the reader to

the citation tree of [8, 48] and to the references in the contemporary theses [49, 50].

The MHS theory can also be described by an L∞ algebra, which is one of the first

results on the MHS symmetry obtained already in [3]. There, the analysis was based on

the MHS gauge transformations and the symmetry of the effective action, which entails all

theories symmetric under MHS transformations, while here, we will focus on the specific
8To use the terminology of [46].
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instance of the Yang-Mills-like theory as defined above and show that it admits an L∞

structure, both in the formulation through the MHS potential and the MHS vielbein.

The definition of the L∞ algebra and our analysis will follow closely [8]. The history

of its appearance in physics is summarized in [51].

2.4.1 Definition and properties of the L∞ algebra

An introduction to L∞ algebras in terms of generalizing Lie algebras is given in appendix

A.3. Here we immediately state the definition of the L∞ algebra precisely. An L∞-algebra

is a Z-graded vector space X

X =
⊕
n

Xn, n ∈ Z (2.101)

where

xk ≡ deg xk = n ⇒ xk ∈ Xn (2.102)

together with a collection of multilinear products `1, `2, `3, ...

`k : X × · · · ×X︸ ︷︷ ︸
k

→ X (2.103)

that are graded commutative with a degree

deg `k = k − 2 (2.104)

meaning

deg(`k(x1, . . . , xk)) = k − 2 +
k∑
i=1

deg(xi) . (2.105)

The graded-commutativity is given by

`k(xσ(1), . . . , xσ(k)) = (−1)σε(σ;x)`k(x1, . . . , xk) (2.106)

where σ is a permutation of k labels, (−1)σ is negative (positive) if the permutation is

odd (even), and ε(σ;x) is the Koszul sign. For example

`2(x2, x1) = (−1)1+deg(x1) deg(x2)`2(x1, x2) . (2.107)

We can use the notation deg(xi) = xi. One direct way to determine the Koszul sign is to

consider a graded commutative algebra

xi ∧ xj = (−1)xixjxj ∧ xi (2.108)
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and find the Koszul sign ε(σ;x) through

x1 ∧ . . . ∧ xk = ε(σ;x)xσ(1) ∧ . . . ∧ xσ(k) . (2.109)

The products `k in L∞ algebra satisfy a very specific quadratic identity enumerated by a

positive integer n equal to the number of inputs. Schematically, the identities are of the

form9 ∑
i+j=n+1

(−1)i(j−1)`j(`i(...)) = 0 (2.110)

and in full detail the identities are∑
i+j=n+1

(−1)i(j−1)(−1)σε(σ;x)`j
(
`i(xσ(1), . . . , xσ(i)), xσ(i+1), . . . , xσ(n)

)
= 0 . (2.111)

The sum is over the so-called "unshuffles", which are permutations that partially keep

the order σ(1) < ... < σ(i) and σ(i+ 1) < ... < σ(n).

Let us unpack the first 3 identities which we will explicitly use below

n=1

`1(`1(x)) = 0 (2.112)

n=2

`1(`2(x1, x2)) = `2(`1(x1), x2) + (−)x1`2(x1, `1(x2)) (2.113)

n=3

0 =`1(`3(x1, x2, x3))

+`3(`1(x1), x2, x3) + (−)x1`3(x1, `1(x2), x3) + (−)(x1+x2)`3(x1, x2, `1(x3))

+`2(`2(x1, x2), x3) + (−)x1(x2+x3)`2(`2(x2, x3), x1) + (−)(x2+x1)x3`2(`2(x3, x1), x2)

2.4.2 L∞ algebras in field theory

The authors in [8] put forward a claim that all field theories which can be defined per-

turbatively are structured with respect to some L∞ algebra. Based on earlier work in

closed string field theory [52], they provide a general form of how equations of motion and

gauge transformations should look when expressed through the L∞ products `k. They
9Compare with (A.34, A.35)
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also define an inner product of vectors and by using it identify the general form of the

action expressed as an inner product of fields with some `k. The inner product is defined

to satisfy

〈x1, x2〉 =(−)x1x2〈x2, x1〉 (2.114)

〈x, `n(x1, . . . , xn)〉 =(−)xx1〈x1, `n(x, . . . , xn)〉 (2.115)

An L∞ algebra together with the inner product is called cyclic.

By direct comparison of the general equations and the specific forms of gauge transfor-

mations, action, and field equations in a specific theory, it is possible to extract information

on how exactly the products `k act, and confirm that these products really follow the L∞

structure. This is what we will do below. It is assumed that there are no vector spaces

with degree d ≤ −3. The gauge parameters Λ, fields Ψ and equations of motion F belong

to the vector spaces

Λ ∈ X0, Ψ ∈ X−1, F ∈ X−2 (2.116)

where the subscript indicates the degree of elements belonging to that vector space. A

field theory is structured through an L∞ algebra as follows

• Gauge transformations are

δΛΨ =`1(Λ) + `2(Λ,Ψ)− 1

2
`3(Λ,Ψ,Ψ)− 1

3!
`4(Λ,Ψ,Ψ,Ψ) + · · · (2.117)

or in general

δΛΨ =
∞∑
n=0

1

n!
(−)

n(n−1)
2 `n+1(Λ,Ψn) . (2.118)

• With (2.117) it can be seen that a commutator of gauge transformations is

δΛ1δΛ2 − δΛ2δΛ1 = δΛ12 + δTΛ1,Λ2
(2.119)

where δΛ12 is an ordinary gauge transformation with a parameter10

Λ12 = `2(Λ2,Λ1) + `3(Λ2,Λ1,Ψ)− 1

2
`4(Λ2,Λ1,Ψ,Ψ, ...) (2.120)

and δTΛ1,Λ2
is an "equation-of-motion" type symmetry, a transformation which van-

ishes on-shell, stated explicitly in e.g. [53]

δTΛ1,Λ2
Ψ =

∞∑
n=0

(−)
n(n−1)

2

n!
`n+3(Λ1,Λ2,F ,Ψ, ...,Ψ) . (2.121)

10Can be shown perturbatively through the use of L∞ identities.
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• The action is

S =
1

2
〈Ψ, `1(Ψ)〉 − 1

3!
〈Ψ, `2(Ψ,Ψ)〉 − 1

4!
〈Ψ, `3(Ψ,Ψ,Ψ)〉+ · · · (2.122)

or in general

S =
∞∑
n=1

1

(n+ 1)!
(−)

n(n−1)
2 〈Ψ, `n(Ψn)〉 . (2.123)

• Field equations are

F(Ψ) = `1(Ψ)− 1

2
`2(Ψ,Ψ)− 1

3!
`3(Ψ,Ψ,Ψ) + · · · (2.124)

or in general

F(Ψ) =
∞∑
n=1

1

n!
(−)

n(n−1)
2 `n(Ψn) . (2.125)

Without reference to a specific field theory, we can identify the products

`k(F ,Ψ,Ψ, ...,Ψ︸ ︷︷ ︸
k−1

) = 0 (2.126)

since their degree would be (k− 2) + (−2) + (k− 1) · (−1) = −3, and a vector space with

degree X−3 does not exist.

2.4.3 L∞ structure of MHSYM theory: MHS potential formula-

tion

First we display the L∞ structure of the MHSYM model where we use ha(x, u) as the

fundamental field. The steps in the analysis are analogous to the analysis of the ordinary

Yang-Mills theory. We will present the final result and then prove it.

The graded vector space is formed by three spaces of interest of fixed degree

• X0 contains gauge parameters ε(x, u), deg ε = 0.

• X−1 contains fields ha(x, u), deg ha = −1.

• X−2 contains equations of motion Fa(x, u), degFa = −2.

Spaces in other degrees are empty. We also define an inner product as an integral of the

Moyal product of factors over the master space.

〈A,B〉 ≡
∫
ddx dduA(x, u) ? B(x, u) (2.127)

32



The only non vanishing products, with Lorentz indices stated, are given by

`1(ε)a =∂aε (2.128)

`1(h)a =(2δba − ∂a∂b)hb (2.129)

`2(ε1, ε2) =i[ε2
?, ε1] (2.130)

`2(ε, h)a =i[ha ?, ε] (2.131)

`2(h1, h2)a =− i
(
∂b[h1b

?, h2a] + ∂b[h2b
?, h1a]

+ [h1b ?, ∂bh2a − ∂ah2b] + [h2b ?, ∂bh1a − ∂ah1b]
)

(2.132)

`2(F , ε)a =i[ε ?, Fa] (2.133)

`3(h1, h2, h3)a =− [hb1
?, [h2a

?, h3b]]− [hb2
?, [h3a

?, h1b]]− [hb3
?, [h1a

?, h2b]]

− [hb2
?, [h1a

?, h3b]]− [hb1
?, [h3a

?, h2b]]− [hb3
?, [h2a

?, h1b]] (2.134)

Proof: identifying products

Most of the products can easily be determined by adapting the MHS expressions to (2.117,

2.124). There are a few more that are identified through the L∞ identities. We start with

the gauge transformations and compare them to the general expressions.

δεha =∂aε+ i[ha ?, ε] (2.135)

δεha =`1(ε)a + `2(ε, h)a −
1

2
`3(ε, h, h)a −

1

3!
`4(ε, h, h, h)a + · · · (2.136)

We identify

`1(ε)a = ∂aε, `2(ε, h)a = i[ha ?, ε], `k>2(ε, h, ...., h)a = 0 . (2.137)

Equations of motion give us

Fa = 2xha − ∂xa∂xb hb + i
(
∂b[hb ?, ha] + [hb ?, ∂bha − ∂ahb]

)
+
[
hb ?, [ha ?, hb]

]
Fa = `1(h)a −

1

2
`2(h, h)a −

1

3!
`3(h, h, h)a + · · · (2.138)

meaning

`1(h)a = (2δba − ∂a∂b)hb, `2(h, h)a = −2i(∂b[hb ?, ha] + [hb ?, ∂bha − ∂ahb])

`3(h, h, h)a = −3![hb ?, [ha ?, hb]], `k>3(h, .., h) = 0 . (2.139)
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It is straightforward to check that the identified products furnish the correct expression

for the action

S =
1

2
〈h, `1(h)〉 − 1

3!
〈h, `2(h, h)〉 − 1

4!
〈h, `3(h, h, h)〉+ · · ·

=

∫
ddx ddu

(
1

2
ha ? (2ηab − ∂a∂b)hb − ∂ahb ? i[ha ?, hb]− 1

4
[ha ?, hb] ? [ha ?, hb]

)
From the products (2.139), which are symmetric due to the fields being deg ha = 1, and

multilinear by definition, we can extract the products with different field inputs. For

instance, in the case of n = 2, we have the identity

`2(h1 + h2, h1 + h2) = 2`2(h1, h2) + `2(h1, h1) + `2(h2, h2) (2.140)

so we find

`2(h1, h2)a =− 1

2
· 2i
(
∂b[h1b + h2b

?, h1a + h2a] + [hb1 + hb2
?, ∂bh1a + ∂bh2a − ∂ah1b − ∂ah2b]

)
− ∂b[h1b

?, h1a] + [hb1
?, ∂bh1a − ∂ah1b]− ∂b[h2b

?, h2a]− [hb2
?, ∂bh2a − ∂ah2b]

=− i
(
∂b[h1b

?, h2a] + ∂b[h2b
?, h1a] + [hb1

?, ∂bh2a − ∂ah2b] + [hb1
?, ∂bh1a − ∂ah1b]

)
.

(2.141)

In a similar manner, we can find the non-diagonal product

`3(h1, h2, h3)a =− [hb1
?, [h2a

?, h3b]]− [hb2
?, [h3a

?, h1b]]− [hb3
?, [h1a

?, h2b]]

− [hb2
?, [h1a

?, h3b]]− [hb1
?, [h3a

?, h2b]]− [hb3
?, [h2a

?, h1b]] (2.142)

The gauge algebra in our case is given by

[δε1 , δε2 ]ha =δi[ε1?,ε2]ha

=δε1(`1(ε2)a + `2(ε2, h)a)− δε2(`1(ε1)a + `2(ε1, h)a)

= `2(ε2, δε1h)a − `2(ε1, δε2h)a

= `2(ε2, `1(ε1) + `2(ε1, h))a − `2(ε1, `1(ε2) + `2(ε2, h))a

= −`2(`1(ε1), ε2)a − `2(ε1, `1(ε2))a + `2(ε2, `2(ε1, h))a − `2(ε1, `2(ε2, h))a

To identify the L∞ structure, we can use the n = 2 identity

`1(`2(x1, x2)) = `2(`1(x1), x2) + (−)x1`2(x1, `1(x2)) (2.143)

and obtain

δi[ε1?,ε2]ha =∂a (i[ε1
?, ε2]) + i[ha ?, i[ε1

?, ε2]]

=− `1(`2(ε1, ε2))a + `2(ε2, `2(ε1, h))a − `2(ε1, `2(ε2, h))a . (2.144)
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In a perturbative comparison in powers of ha we find

−`1(`2(ε1, ε2))a = ∂a (i[ε1
?, ε2]) . (2.145)

Since `2(ε1, ε2) is an element of degree 0, we can use the rule `1(ε)a = ∂aε to conclude

`2(ε1, ε2) = −i[ε1
?, ε2] (2.146)

At the linear order in ha, we can confirm the product rule (2.137) which now takes the

from

`2(ε2, `2(ε1, h))a = i[[ha ?, ε1] ?, ε2] (2.147)

The gauge commutator enables us also through (2.120) to identify

`3(ε1, ε2, h) = 0, `k>3(ε1, ε2, h, ..., h) = 0 (2.148)

while the fact that our algebra closes off-shell implies through (2.121)

`3(ε1, ε2, E) = 0 (2.149)

Proof: verifying identities

We will organize the verification of (2.111) by the number of inputs.

n=1 The identity to be checked is

`1(`1(x)) = 0 . (2.150)

The only non-trivial identity to be checked is

`1(`1(ε))a = `1(∂aε) = (2ηab − ∂a∂b)∂bε = 0 . (2.151)

which is satisfied.

n=2 The relevant identity is

`1(`2(x1, x2)) = `2(`1(x1), x2) + (−)x1`2(x1, `1(x2)) . (2.152)

At input degree 0 we have

`1(`2(ε1, ε2)) = `2(`1(ε1), ε2) + (−)ε1`2(ε1, `1(ε2)) (2.153)

−i`1([ε1
?, ε2])a = `2(∂aε1, ε2) + `2(ε1, ∂aε2) (2.154)

−i∂a[ε1
?, ε2] = `2(∂aε1, ε2) + `2(ε1, ∂aε2) . (2.155)
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We can use the map with inputs of degree 1 and 0

`2(h, ε)a = i[ε ?, ha] (2.156)

to obtain that the identity is valid

−i[∂aε1
?, ε2]− i[ε1

?, ∂aε2] = i[ε2
?, ∂aε1]− i[ε1

?, ∂aε2] . (2.157)

At input degree −1 we have

`1(`2(h, ε)) = `2(`1(h), ε)a + (−)h`2(h, `1(ε)) (2.158)

i`1([ε ?, ha]) = `2(`1(h), ε)a − `2(h, ∂aε) . (2.159)

Since we have not yet identified the product of the type `2(E, ε) where E ∈ X−2, ε ∈ X0,

we explicitly calculate the rest, and recognize it through this identity. The non-symmetric

version of `2 was reported above in (2.141), so we have

i(2δba − ∂a∂b)[ε ?, hb] = `2(`1(h), ε)a+ (2.160)

i
(
∂b[hb ?, ∂aε] + ∂b[∂bε ?, ha] + [hb ?, ∂b∂aε− ∂a∂bε] + [∂bε ?, ∂bha − ∂ahb]

)
(2.161)

which can be reduced to

`2(`1(h), ε)a =i[ε ?, 2ha − ∂a∂bhb] (2.162)

=i[ε ?, `1(h)a] . (2.163)

For that reason we define the product `2 with inputs E ∈ X−2 and ε ∈ X0 as

`2(E, ε) =i[ε ?, E] (2.164)

At input degree -2, we have a trivial equality, since the target vector space would be of

degree -3.

n=3 The relevant identity is

0 =`1(`3(x1, x2, x3))

+`3(`1(x1), x2, x3) + (−)x1`3(x1, `1(x2), x3) + (−)(x1+x2)`3(x1, x2, `1(x3))

+`2(`2(x1, x2), x3) + (−)x1(x2+x3)`2(`2(x2, x3), x1) + (−)(x2+x1)x3`2(`2(x3, x1), x2) .

(2.165)
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At input degree 0 we have

0 =`1(`3(ε1, ε2, ε3))

+`3(`1(ε1), ε2, ε3) + `3(ε1, `1(ε2), ε3) + `3(ε1, ε2, `1(ε3))

+`2(`2(ε1, ε2), ε3) + `2(`2(ε2, ε3), ε1) + `2(`2(ε3, ε1), ε2) . (2.166)

Because of (2.148) the second line vanishes, and we find

`1(`3(ε1, ε2, ε3)) = −`2(`2(ε1, ε2), ε3)− `2(`2(ε2, ε3), ε1)− `2(`2(ε3, ε1), ε2)

=− `2(i[ε2
?, ε1], ε3)− `2(i[ε3

?, ε2], ε1)− `2(i[ε1
?, ε3], ε2)

=[ε3
?, [ε2

?, ε1]] + [ε1
?, [ε3

?, ε2]] + [ε2
?, [ε1

?, ε3]]

=0 (2.167)

We can thus confirm that it is consistent to set `3(ε1, ε2, ε3) = 0.

At input degree −1 we have

0 =`1(`3(ε1, ε2, h))a

+`3(`1(ε1), ε2, h)a + (−)ε1`3(ε1, `1(ε2), h)a + (−)ε1+ε2`3(ε1, ε2, `1(h))a

+`2(`2(ε1, ε2), h3)a + (−)ε1(ε2+h)`2(`2(ε2, h), ε1)a + (−)(ε2+ε1)h`2(`2(h, ε1), ε2)a . (2.168)

The first line vanishes due to (2.148), the second line vanishes due to (2.137). We are left

with the third line

0 =`2(`2(ε1, ε2), h3)a + `2(`2(ε2, h), ε1)a + `2(`2(h, ε1), ε2)a

=`2(i[ε2
?, ε1], h)a + `2(i[h ?, ε2], ε1)a + `2(i[ε1

?, h], ε2)a

=− [ha ?, [ε2
?, ε1]]− [ε1

?, [ha ?, ε2]]− [ε2
?, [ε1

?, ha]]

=0 (2.169)

which vanishes by the virtue of the Moyal bracket satisfying the Jacobi identity.

At input degree −2 we have as inputs either ε1, ε2,F or ε1, h, h. The first option gives

0 =`1(`3(ε1, ε2,F))

+`3(`1(ε1), ε2,F) + `3(ε1, `1(ε2),F) + `3(ε1, ε2, `1(F))

+`2(`2(ε1, ε2),F) + `2(`2(ε2,F), ε1) + `2(`2(F , ε1), ε2) . (2.170)
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The first line vanishes due to (2.149), the third term in the second line vanishes due to

(2.149), the third line vanishes again due to the Jacobi identity of the Moyal commutator

and we are left with

0 = `3(`1(ε1), ε2,F) + `3(ε1, `1(ε2),F) (2.171)

The second possibility at degree −2 is

0 =`1(`3(h1, h2, ε3))

+`3(`1(h1), h2, ε3)− `3(h1, `1(h2), ε3) + `3(h1, h2, `1(ε3))

+`2(`2(h1, h2), ε3)− `2(`2(h2, ε3), h1) + `2(`2(ε3, h1), h2) . (2.172)

The first line vanishes due to (2.137), and we have

−`3(h1, h2, `1(ε3)) =`3(`1(h1), h2, ε3)− `3(h1, `1(h2), ε3)

+`2(`2(h1, h2), ε3)− `2(`2(h2, ε3), h1) + `2(`2(ε3, h1), h2) . (2.173)

On the left hand side we will have due to (2.142)

−`3(h1, h2, ∂ε3)a =[hb1
?, [h2a

?, ∂bε3]] + [hb2
?, [∂aε3

?, h1b]] + [∂bε3
?, [h1a

?, h2b]]

+ [hb2
?, [h1a

?, ∂bε3]] + [hb1
?, [∂aε3

?, h2b]] + [∂bε3
?, [h2a

?, h1b]] , (2.174)

while the last three terms on the right hand side give

`2(`2(h1, h2), ε3)a − `2(`2(h2, ε3), h1)a + `2(`2(ε3, h1), h2)a =

=[ε3
?, ∂b[h1b

?, h2a]] + [ε3
?, ∂b[h2b

?, h1a]] + [ε3
?, [hb1

?, ∂bh2a − ∂ah2b]] + [ε3
?, [hb2

?, ∂bh1a − ∂ah1b]]

−
(
∂b[[ε3

?, h2b] ?, h1a] + ∂b[h1b
?, [ε3

?, h2a]] + [[ε3
?, hb2] ?, ∂bh1a − ∂ah1b] + [hb1

?, ∂b[ε3
?, h2a]− ∂a[ε3

?, h2b]]
)

−
(
∂b[[ε3

?, h1b] ?, h2a] + ∂b[h2b
?, [ε3

?, h1a]] + [[ε3
?, hb1] ?, ∂bh2a − ∂ah2b] + [hb2

?, ∂b[ε3
?, h1a]− ∂a[ε3

?, h1b]]
)
.

(2.175)

Even though the procedure is tedious, we can confirm that these two expressions are

identical. Calculations can be facilitated by a computer [54]. We conclude

− `3(h1, h2, ∂ε3) = `2(`2(h1, h2), ε3)− `2(`2(h2, ε3), h1) + `2(`2(ε3, h1), h2) (2.176)

which leads us to the version of the n = 3 identity as

0 =`3(`1(h1), h2, ε3)− `3(h1, `1(h2), ε3) . (2.177)

Both with (2.171), we see that it is consistent to set the products `3(ε, h, E) = 0. Fur-

thermore, we set all `4 = 0.
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n=4 With the products `4 = 0, the n = 4 identity becomes

0 =− `2(`3(x1, x2, x3), x4) + (−)x3x4`2(`3(x1, x2, x4), x3) + (−)(1+x1)x2`2(x2, `3(x1, x3, x4))

− (−)x1`2(x1, `3(x2, x3, x4)) + `3(`2(x1, x2), x3, x4) + (−)1+x2x3`3(`2(x1, x3), x2, x4)

+ (−)x4(x2+x3)`3(`2(x1, x4), x2, x3)− `3(x1, `2(x2, x3), x4) + (−)x3x4`3(x1, `2(x2, x4), x3)

+ `3(x1, x2, `2(x3, x4)) (2.178)

The degree of the identity is equal to deg(`2`3) = 1, which means that a nontrivial result

could be obtained for inputs of total degree −1 which is εεεh, total degree −2 which are

εεεF, εεhh or total degree −3 which are εεhF, εhhh. Now, if we keep in mind that we

have realized the product `3 as being non-vanishing only for the input of hhh and since

deg `2 = 0, each option but the last (input of type εhhh) is trivial. The identity to check

is

`2(`3(h1, h2, h3), ε4) =`3(`2(h1, ε4), h2, h3) + `3(h1, `2(h2, ε4), h3) + `3(h1, h2, `2(h3, ε4))

=i`3([ε4
?, h1], h2, h3) + i`3(h1, [ε4

?, h2], h3) + i`3(h1, h2, [ε4
?, h3])

=i`3([ε4
?, h1], h2, h3) + i`3([ε4

?, h2], h1, h3) + i`3([ε4
?, h3], h1, h2) .

(2.179)

We simply find the left hand side as

i[ε4
?, `3(h1, h2, h3)]a =− i[ε4

?, [hb1
?, [h2a

?, h3b]]]− i[ε4
?, [hb2

?, [h3a
?, h1b]]]− i[ε4

?, [hb3
?, [h1a

?, h2b]]]

− i[ε4
?, [hb2

?, [h1a
?, h3b]]]− i[ε4

?, [hb1
?, [h3a

?, h2b]]]− i[ε4
?, [hb3

?, [h2a
?, h1b]]] ,

(2.180)

while the right hand side gives us more work, but is straightforward

`3([ε4
?, h1], h2, h3)a =− [[ε4

?, h1]b ?, [h2a
?, h3b]]− [hb2

?, [h3a
?, [ε4

?, h1b]]]− [hb3
?, [[ε4

?, h1a] ?, h2b]]

− [hb2
?, [[ε4

?, h1a] ?, h3b]]− [[ε4
?, hb1] ?, [h3a

?, h2b]]− [hb3
?, [h2a

?, [ε4
?, h1b]]]

(2.181)

`3([ε4
?, h2], h1, h3)a =− [[ε4

?, hb2] ?, [h1a
?, h3b]]− [hb1

?, [h3a
?, [ε4

?, h2b]]]− [hb3
?, [[ε4

?, h2a] ?, h1b]]

− [hb1
?, [[ε4

?, h2a] ?, h3b]]− [[ε4
?, hb2] ?, [h3a

?, h1b]]− [hb3
?, [h1a

?, [ε4
?, h2b]]]

(2.182)

`3([ε4
?, h3], h1, h2)a =− [[ε4

?, hb3] ?, [h1a
?, h2b]]− [hb1

?, [h2a
?, [ε4

?, h3b]]]− [hb2
?, [[ε4

?, h3a] ?, h1b]]

− [hb1
?, [[ε4

?, h3a] ?, h2b]]− [[ε4
?, hb3] ?, [h2a

?, h1b]]− [hb2
?, [h1a

?, [ε4
?, h3b]]] .

(2.183)

39



Again, though the calculation is tedious, it is straightforward and can be assisted by a

computer. The identity (2.179) is satisfied.

n=5 The identity with 5 inputs is schematically

`1`5 + `2`4 + `3`3 = 0 . (2.184)

We set all `k≥4 = 0, so the only thing to check in this identity is the combination of

`3 products. However, the `3 is only non-vanishing for inputs of degree −1, in which

case deg `3(h, h, h) = −2. This becomes an input to the second `3 and gives a zero by

definition, so the identity is satisfied.

n≥6 The identities with 6 inputs will exclusively always have a product with more than

3 inputs, which are all 0 by definition.

We conclude that the MHSYM theory is an instance of the L∞ algebra with the only

non-vanishing products given by (2.128 - 2.134).

2.4.4 L∞ structure of MHSYM theory: MHS covariant approach

In the covariant approach, we use the MHS vielbein as the fundamental field. The desig-

nation of elements to graded vector spaces is

• X0 contains gauge parameters ε(x, u), deg ε = 0.

• X−1 contains fields ea(x, u), deg ea = −1.

• X−2 contains equations of motion Fa(x, u), degFa = −2.

The L∞ structure is now simpler, with the only non-vanishing products being

`2(ε1, ε2) =i[ε2
?, ε1] (2.185)

`2(ε, e)a =i[ea ?, ε] (2.186)

`2(F , ε)a =i[ε ?, Fa] (2.187)

`3(e1, e2, e3)a =− [eb1
?, [e2a

?, e3b]]− [eb2
?, [e3a

?, e1b]]− [eb3
?, [e1a

?, e2b]]

− [eb2
?, [e1a

?, e3b]]− [eb1
?, [e3a

?, e2b]]− [eb3
?, [e2a

?, e1b]] (2.188)
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Proof: identifying products

The gauge transformations are

δεea = i[ea, ε] (2.189)

so we read out

`1(ε)a = 0, `2(ε, e)a = i[ea, ε], `k>2(ε, e, e, ...)a = 0 . (2.190)

The commutator of gauge transformations is

[δε1δε2 − δε2δε1 ]ea = δi[ε1?,ε2]ea (2.191)

= `2(ε1, `2(ε2, e))a − `2(ε2, `2(ε1, e))a (2.192)

= δ`2(ε2,ε1)ea (2.193)

and we find

`2(ε1, ε2) = i[ε2
?, ε1] . (2.194)

Equations of motion are

− [eb ?, [eb ?, ea]] = 0 . (2.195)

So we have

`1(e)a = 0, `2(e, e)a = 0, `3(e, e, e)a = 3![eb ?, [eb ?, ea]] . (2.196)

The non-diagonal version of `3 is

`3(e1, e2, e3)a =[eb1
?, [e2b

?, e3a]] + [eb2
?, [e3b

?, e1a]] + [eb3
?, [e1b

?, e2a]] (2.197)

+[eb2
?, [e1b

?, e3a]] + [eb1
?, [e3b

?, e2a]] + [eb3
?, [e2b

?, e1a]] . (2.198)

We set all `k>3 = 0

Proof: verifying identities

n=1

`2
1 = 0 (2.199)

which is identically true since all `1 = 0

n=2

`1(`2(x1, x2)) = `2(`1(x1), x2) + (−)x1`2(x1, `1(x2)) (2.200)

The identity is trivially satisfied, again since `1 = 0.
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n=3

0 =`1(`3(x1, x2, x3))

+`3(`1(x1), x2, x3) + (−)x1`3(x1, `1(x2), x3) + (−)(x1+x2)`3(x1, x2, `1(x3))

+`2(`2(x1, x2), x3) + (−)x1(x2+x3)`2(`2(x2, x3), x1) + (−)(x2+x1)x3`2(`2(x3, x1), x2)

(2.201)

At input degree 0 we find the Jacobi identity of the Moyal bracket

0 =`2(`2(ε1, ε2), ε3) + `2(`2(ε2, ε3), ε1) + `2(`2(ε3, ε1), ε2)

=− [ε3
?, [ε2, ?, ε1]]− [ε1

?, [ε3, ?, ε2]]− [ε2
?, [ε1, ?, ε3]]

= 0 . (2.202)

At input degree −1 with inputs ε1ε2e3 we find again the Jacobi identity of the Moyal

bracket

0 = `2(`2(ε1, ε2), e3)a + `2(`2(ε2, e3), ε1)a + `2(`2(e3, ε1), ε2)a

=− [e3a
?, [ε2, ?, ε1]]− [ε1

?, [e3a, ?, ε2]]− [ε2
?, [ε1, ?, e3a]]

= 0 . (2.203)

At input degree −2 with inputs ε1, e2, e3

0 =`2(`2(ε1, e2), e3) + `2(`2(e2, e3), ε1)− `2(`2(e3, ε1), e2)

=0 (2.204)

since all `2(e, e) with e ∈ X−1 are 0.

At input degree −2 with inputs ε1, ε2,F3

0 =`2(`2(ε1, ε2),F3) + `2(`2(ε2,F3), ε1) + `2(`2(F3, ε1), ε2) . (2.205)

This identity will be satisfied if we choose the product

`2(ε,F)a ≡ i[Fa, ?, ε] (2.206)

n=4 With all `k>3 = 0 we have

0 =− `2(`3(x1, x2, x3), x4) + (−)x3x4`2(`3(x1, x2, x4), x3) + (−)(1+x1)x2`2(x2, `3(x1, x3, x4))

− (−)x1`2(x1, `3(x2, x3, x4)) + `3(`2(x1, x2), x3, x4) + (−)1+x2x3`3(`2(x1, x3), x2, x4)

+ (−)x4(x2+x3)`3(`2(x1, x4), x2, x3)− `3(x1, `2(x2, x3), x4) + (−)x3x4`3(x1, `2(x2, x4), x3)

+ `3(x1, x2, `2(x3, x4)) (2.207)
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The degree of the identity is 1, so the input degrees can be −1,−2,−3. However, again,

notice that while `2 does not change degree, the only possibility where `3 is non vanishing is

at inputs e1, e2, e3, which means there is a single non-trivial check with inputs e1, e2, e3, ε4.

0 =− `2(`3(e1, e2, e3), ε4) + `2(`3(e1, e2, ε4), e3) + `2(e2, `3(e1, e3, ε4))

+ `2(e1, `3(e2, e3, ε4)) + `3(`2(e1, e2), e3, ε4) + `3(`2(e1, e3), e2, ε4)

+ `3(`2(e1, ε4), e2, e3)− `3(e1, `2(e2, e3), ε4) + `3(e1, `2(e2, ε4), e3)

+ `3(e1, e2, `2(e3, ε4)) . (2.208)

After removing the vanishing products, we are left with

`2(`3(e1, e2, e3), ε4) =`3(`2(e1, ε4), e2, e3) + `3(e1, `2(e2, ε4), e3) + `3(e1, e2, `2(e3, ε4)) .

(2.209)

The left hand side is

`2(`3(e1, e2, e3), ε4)a =i[ε4
?, [eb1

?, [e2b
?, e3a]]] + i[ε4

?, [eb2
?, [e3b

?, e1a]]] + i[ε4
?, [eb3

?, [e1b
?, e2a]]]

+i[ε4
?, [eb2

?, [e1b
?, e3a]]] + i[ε4

?, [eb1
?, [e3b

?, e2a]]] + i[ε4
?, [eb3

?, [e2b
?, e1a]]] ,

(2.210)

while on the right hand side we have

`3(`2(e1, ε4), e2, e3)a =[i[ε4
?, eb1] ?, [e2b

?, e3a]] + [eb2
?, [e3b

?, [ε4
?, e1a]]] + [eb3

?, [[ε4
?, e1b] ?, e2a]]

+[eb2
?, [[ε4

?, e1b] ?, e3a]] + [[ε4
?, eb1] ?, [e3b

?, e2a]] + [eb3
?, [e2b

?, [ε4
?, e1a]]]

(2.211)

`3(`2(e2, ε4), e1, e3)a =[i[ε4
?, eb2] ?, [e1b

?, e3a]] + [eb1
?, [e3b

?, [ε4
?, e2a]]] + [eb3

?, [[ε4
?, e2b] ?, e1a]]

+[eb1
?, [[ε4

?, e2b] ?, e3a]] + [[ε4
?, eb2] ?, [e3b

?, e1a]] + [eb3
?, [e1b

?, [ε4
?, e2a]]]

(2.212)

`3(`2(e3, ε4), e1, e2)a =[i[ε4
?, e3]b ?, [e1b

?, e2a]] + [eb1
?, [e2b

?, [ε4
?, e3a]]] + [eb2

?, [[ε4
?, e3b] ?, e1a]]

+[eb1
?, [[ε4

?, e3b] ?, e2a]] + [[ε4
?, eb3] ?, [e2b

?, e1a]] + [eb2
?, [e1b

?, [ε4
?, e3a]]] .

(2.213)

With a bit of help from a computer, facilitated by the fact that the Moyal product is

associative, we can see that this identity is also satisfied.
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n=5 Again, we have a similar conclusion that only the terms of the type `3`3 could be

non-trivial. However, `3 are non-vanishing only for inputs e1, e2, e3, but since `3(e1, e2, e2) ∈

X−2, and any `3 with an input from X−2 is vanishing, the identity holds trivially.

n≥6 All identities will always contain terms which all have at least an `4 which is 0.

These identities are thus trivially satisfied.

We confirm the conclusions of the calculation above, the MHSYM theory is described

by an L∞ structure. The covariant formulation allows for a simpler presentation of the

L∞ products, thus also the identities are easier to check. Though the formulations are

equivalent in case of a Minkowski background ea = ua + ha, the covariant formulation

is more general and allows for different backgrounds. This is an important point to

bear in mind for future work. As we have seen, the different phases of the theory are

gauge inequivalent, and it would be expected that they are described by a different L∞

structure. Here we found the L∞ structure of the most general formulation, and it might

prove interesting to find morphisms between L∞ algebras of the various formulations.
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Chapter 3

A unitary representation of the Lorentz

group on Hermite functions

For the purposes of the expansion in chapter 4, we would like to represent the Lorentz

group on the space of square integrable functions in 4 dimensions L2(R4) (generalization

to an arbitrary number of dimensions is straightforward). We start with a reminder on

representing groups on spaces of functions and outline the method we used to construct the

representation. Afterwards, we specialize to 4 dimensions with Hermite functions forming

the basis of the representation space. We provide explicit representation matrices for

finite boosts in particular directions and rotations around a particular axis. From the

finite case, we find the generators of the Lorentz Lie algebra. Finally, we discuss a basis

for the vector space of Hermite functions diagonal in the rotation operator around the z

axis.

The defining representation of the Lorentz group are matrices Λµ
ν used to perform a

continuous linear transformation on coordinate components

xµ → x′µ = Λµ
νx

ν (3.1)

such that the sum ηµνx
µxν is preserved, with ηµν the metric of Minkowski spacetime

Λµ
αΛν

βηµν = ηαβ. (3.2)

The matrices Λ are finite dimensional (their dimension being determined by the dimension

of the Minkowski spacetime), but they are not unitary, instead satisfying the condition

(3.2) above.
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We choose multi-dimensional Hermite functions to be the basis of the representation

space. Since the group of rotations is a subgroup of the Lorentz group, the proposed

method can be also used to represent SO(3) on the space of L2(R3), or generalized to

representing SO(d) on L2(Rd) spanned by Hermite functions. By choosing an inner prod-

uct, the representation space can be made into a Hilbert space, and by construction the

representation matrices will be unitary.

3.1 Representing a group on a function space

Let a group G be represented on Rd by linear operators ρ(g) as

x→ x′ = ρ(g) · x (3.3)

with the central dot representing matrix multiplication. When acting on the coordinate

components x, we will omit writing ρ(g) and simply write g. A group is represented on

the space of functions on Rd as

h(x)→ h′(x) ≡ h(g−1x) (3.4)

since for g3 = g2 ◦ g1 we have

h′′(x) = h′(g−1
2 x) = h(g−1

1 g−1
2 x) = h(g−1

3 x) . (3.5)

Let us choose a complete orthonormal real basis of functions fN(x) which will span L2(Rd).

The capital letter indices can be multi-valued, making this exposition general. We will

spell them out for the particular choice of Hermite functions in the next section. The

orthonormality and completeness conditions are given by∫
ddx fN(x)fM(x) = δNM ,

∑
N

fN(x)fN(y) = δ(d)(x− y) . (3.6)

We can now expand h(x), an arbitrary element of L2(Rd) in the chosen basis as

h(x) =
∑
N

hNfN(x) . (3.7)

This type of an expansion can now be used to relate the components hN of the original

function to the components of h′N of a transformed function, since there are two ways of

expanding a transformed function h′(x) = h(g−1x).

h′(x) =
∑
N

hNfN(g−1x) =
∑
M

h′MfM(x) (3.8)

46



We can multiply (3.8) with fK(x), and integrate over the whole space.∑
N

hN
∫
ddx fK(x)fN(g−1x) =

∑
M

h′M
∫
ddx fK(x)fM(x) (3.9)

Due to the orthogonality of the basis functions (3.6), we can conclude that the new

components h′M are linearly related to the old components hN as

h′M =
∑
N

hN
(∫

dx fM(x)fN(g−1x)

)
(3.10)

and thus define a representation of G denoted by

DM
N (g) ≡

∫
dx fM(x)fN(g−1x) . (3.11)

The transformation between function components can now be written as

h′M =
∑
N

DM
N (g)hN (3.12)

The constructed matrices DM
N (g) are real since the choice of the basis functions fN(x)

was real. The procedure can be generalized to complex valued functions.

It is easy to see that the matrices DM
N form a representation of the group G, since for

g3 = g2 ◦ g1 we have

h′′(x) =h′(g−1
2 x) = h(g−1

1 g−1
2 x) = h(g−1

3 x) (3.13)

=
∑
N

h′′NfN(x) (3.14)

=
∑
M

h′MfM(g−1
2 x) =

∑
M,K

DM
K (g1)hKfM(g−1

2 x) (3.15)

=
∑
M

DN
K(g3)hKfN(x) . (3.16)

Again, due to the orthogonality of the basis functions, we can conclude

h′′N =
∑
M,K

DM
K (g1)

(∫
dx fN(x)fM(g−1

2 x)

)
hK =

∑
M,K

DM
K (g1)DN

M(g2)hK (3.17)

meaning that the composition is respected

DN
K(g3) =

∑
M

DN
M(g2)DM

K (g1) . (3.18)

To prove unitarity, we can use equation (3.11) and see that the representation matrices

enable us to relate transformed and non-transformed basis functions as

fN(g−1x) =
∑
M

DM
N (g)fM(x) . (3.19)
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This expression makes it easy to prove that for the rotation group and the Lorentz group,

the constructed representation is unitary. The following two integrals are equal in value∫
ddx fN(g−1x)fM(g−1x) =

∫
ddy fN(y)fM(y) = δNM (3.20)

because under the change of variables y ≡ g−1x the Jacobian is equal to unity. Applying

the transformation (3.19) we get∫
dx fN(g−1x)fM(g−1x) =

∑
J,K

DJ
ND

K
M

∫
dx fJ(x)fK(x)︸ ︷︷ ︸

δJK

=
∑
J

DJ
ND

J
M (3.21)

Meaning that the (real) representation matrices DM
N (g) are unitary.∑

J

DJ
ND

J
M =

∑
J

(DT )NJ D
J
M = δNM . (3.22)

It is important to note that one of the first constructions of a unitary infinite-dimensional

representations of the Lorentz group was done by Dirac in 1944. [55]. The representation

space was a suitably defined space of infinite sums of polynomials of a real variable with

the coefficients in sums named "expansors".

3.2 Representation of the Lorentz group on L2(R4)

3.2.1 Hermite functions and the generating integral

A good basis for the Hilbert space L2(R4) are multi-dimensional Hermite functions defined

below. Partial results for the representation matrices of the Lorentz group on Hermite

functions were obtained by Ruiz [56] and generalized by Rotbart [57] in the context of

finding boosted eigenfunctions of a relativistic quantum harmonic oscillator. Their results

cover the case of one-dimensional boosts. The main idea we take from their calculations is

to focus on generating functions and find the sought-for result in the subsequent expansion.

Our method is more general and enables us to calculate the representation matrices for

arbitrary elements of the Lorentz group.

Hn(x) are the (physicists’) Hermite polynomials

Hn(x) = (−1)nex
2 dn

dxn
e−x

2

, (3.23)

where the index n can attain arbitrary non-negative integer values. Hermite functions are

defined as

fn(x) =
1√

2nn!
√
π
e−

x2

2 Hn(x) . (3.24)
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Most importantly, they are orthonormal on the whole real line∫ ∞
−∞

dx fn(x)fm(x) = δnm . (3.25)

The completeness identity for Hermite function is given as
∞∑
n=0

fn(x)fn(y) = δ(x− y) . (3.26)

We define a multi-dimensional Hermite function as a product

fn0n1n2n3(t, x, y, z) ≡ fn0(t)fn1(x)fn2(y)fn3(z) ≡ fN(x) , (3.27)

where we have defined a multi-index notation, N = {n0n1n2n3}. To calculate the repre-

sentation matrices, as seen above in (3.11), we need the result to the integral

Dm0m1m2m3
n0n1n2n3

(Λ) =

∫
d4x fm0m1m2m3(x)fn0n1n2n3(Λ−1x) . (3.28)

A direct calculation of the above integral is a hard problem, but we can use an alternative

route and find the result in the following way. The generating function for Hermite

polynomials is given by

e2xq1−q2
1 =

∞∑
m1=0

Hm1(x)
qm1

1

m1!
. (3.29)

Multiplying it by e−x2/2, we define the generating function for Hermite functions

E1(x, q1) ≡ e2xq1−q2
1−x2/2 =

∞∑
m1=0

cm1

qm1
1

m1!
fm1(x) (3.30)

where cm1 = (2m1m1!
√
π)1/2. We can easily generalize the new generating function to 4

dimensions

E(x, q) ≡ E0(t, q0)E1(x, q1)E2(y, q2)E3(z, q3) . (3.31)

Next, we multiply two generating functions (3.31), integrate the product, and expand it

in the generating variables in the following way:∫
d4xE(x, q)E(Λ−1x, p) =

∞∑
M=0

∞∑
N=0

cMcN
qM

M!

pN

N!

∫
d4x fM(x)fN(Λ−1x) (3.32)

where N,M are multi indices standing for N = {n0, n1, n2, n3}, M = {m0,m1,m2,m3}.

The coefficients on the right hand side of (3.32) provide exactly the transformation ma-

trices (3.28). It will be shown below that the integral on the left hand side of (3.32) is

relatively easily obtainable for any Lorentz transformation. In [56, 57] they have employed

light-cone coordinates and evaluated this integral for the case of one-dimensional boosts.
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3.2.2 Generating integral for an arbitrary Lorentz transformation

The idea is to rewrite the integral (3.32) in the general 4-dimensional case for any Lorentz

transformation in the form of a Gaussian integral. To proceed in a compact fashion, we

introduce auxiliary variables

pµ ≡ (−p0, p1, p2, p3), qµ ≡ (−q0, q1, q2, q3), nµ ≡ (1, 0, 0, 0) . (3.33)

Even though they are written in a 4-vector form, by our demand, they do not change

under Lorentz transformations. Their sole purpose is to be a placeholder, and enable

4-vector notation1, through which we can rewrite the integral (3.32) in a matrix form.

For the 4-dimensional case, we write the generating function (3.31) for the Hermite

functions as

E(x, q) = exp

[
2xµq

µ − qµqµ − 2 (nµq
µ)2 − 1

2

(
xµx

µ + 2
(
nµx

µ)2
))]

. (3.34)

We repeat for some transformed variables x′ = Λ−1x

E(x′, p) = exp

[
2x′µp

µ − pµpµ − 2 (nµp
µ)2 − 1

2

(
x′µx

′µ + 2
(
nµx

′µ)2
))]

. (3.35)

After a careful rearranging of the terms, the integral (3.32) can be rewritten as∫
d4xE(x, q)E(x′, p) =

∫
d4x exp[−1

2
xαAαβx

β + Jαx
α + C] (3.36)

with

Aαβ = 2ηαβ + 2(Λ−1)0α(Λ−1)0β + 2nαnβ (3.37)

Jα = 2pν(Λ−1)να + 2qνηνα (3.38)

C =− qµqµ − 2 (nµq
µ)2 − pµpµ − 2 (nµp

µ)2 . (3.39)

The result of the integral can now easily be obtained since it is of the Gaussian form (see

e.g. ch. 9 in [58])

I(p, q,Λ−1) =

∫
d4xE1(x, q)E2(x′, p) (3.40)

=
(2π)2

√
detA

exp

[
1

2
Jα[A−1]αβJβ

]
e−(q2

0+...+q2
3+p2

0+...+p2
3) . (3.41)

We notice that the matrix Aαβ contains only the 0th rows of the Lorentz transformation

matrix, where we find only information about boosts, i.e. the matrix Aαβ is insensitive
1eg. t2 + x2 + y2 + z2 = xµx

µ + 2(nµx
µ)2
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to the rotation part of the Lorentz group. For that reason, only inside Aαβ, we can use

an explicit expression for the inverse of Lorentz boosts

(Λ−1)αβ =



γ −γvx/c −γvy/c −γvz/c

−γvx/c 1 + (γ − 1)
v2
x

v2
(γ − 1)

vxvy
v2

(γ − 1)
vxvz
v2

−γvy/c (γ − 1)
vyvx
v2

1 + (γ − 1)
v2
y

v2
(γ − 1)

vyvz
v2

−γvz/c (γ − 1)
vzvx
v2

(γ − 1)
vzvy
v2

1 + (γ − 1)
v2
z

v2


(3.42)

This enables us to explicitly write down Aαβ.

A = 2γ2


1 −vx −vy −vz
−vx v2

x + 1
γ2 vxvy vxvz

−vy vxvy v2
y + 1

γ2 vyvz

−vz vxvz vyvz v2
z + 1

γ2

 (3.43)

The determinant of Aαβ is given by detA = 16 γ2, while the inverse is

A−1 =


1
2

vx
2

vy
2

vz
2

vx
2

1
2

0 0

vy
2

0 1
2

0

vz
2

0 0 1
2

 (3.44)

We can also explicitly write down the inverse of Aαβ as

[A−1]αβ =
1

2
ηαβ + nαnβ +

1

4γ2

(
(Λ−1)0α(Λ−1)0β − (Λ−1)α0(Λ−1)β0

)
(3.45)

To shorten the formulas, define

Zαβ =
1

4γ2

(
(Λ−1)0α(Λ−1)0β − (Λ−1)α0(Λ−1)β0

)
(3.46)

The generating integral (3.40) is now given by

I(p, q,Λ−1) =
π2

γ
exp

[
2pµpν

(
(Λ−1)ν0(Λ−1)µ0 + Zαβ(Λ−1)µβ(Λ−1)να − nµnν

)]
× exp [2qµqν Zµν ]

× exp
[
2pµqν

(
(Λ−1)µν + 2(Λ−1)µ0nν + Zαν(Λ

−1)µ
α + Zνα(Λ−1)µ

α
)]
(3.47)

The formula (3.47) is the first important result of this chapter. It is possible to extract

from this integral a transformation matrix for an arbitrary Lorentz transformation. For
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the intelligibility of expressions, we will provide formulas for boosts and rotations sepa-

rately.

A nice consistency check is to calculate I(p, q,Λ−1) for the case of one-dimensional

boosts, eg. vx = v 6= 0 while vy = vz = 0. That case was covered by [57] in their formula

(10). To get a two-dimensional result we can set.

pµ = (−p0, p1, 0, 0), qµ = (−q0, q1, 0, 0) . (3.48)

The integral

I(p, q, v) = π2
√

1− v2 exp
[
−2p0p1v + 2q0q1v + 2p0q0

√
1− v2 + 2p1q1

√
1− v2

]
(3.49)

agrees completely with [57] after appropriate identifications.

3.2.3 Extracting the representation matrices

From the expression (3.32) we can see that to extract the representation matrices, we will

have to expand I(q, p,Λ−1) in powers of p and q.

I(p, q,Λ−1) =
∑
N,M

pN

N!

qM

M!

[
∂N+MI(p, q,Λ−1)

∂pN∂qM

] ∣∣∣∣∣
p=q=0

(3.50)

The multi index notation was defined above2. The representation matrices are then given

by

DM
N (Λ) =cMcN

∂N+MI(p, q,Λ−1)

∂pN∂qM

∣∣∣∣∣
p=q=0

(3.53)

where the cM are multi-dimensional normalization constants defined through generalizing

(3.24).

An alternative calculation to performing the partial derivatives starts by noticing that

I(p, q,Λ−1) =
π2

γ
ef(p,q,Λ−1) =

π2

γ

∑
r

1

r!
f(p, q,Λ−1)r . (3.54)

2To be precise, we report the formula (3.50) with all the indices spelled out

I(p, q,Λ−1) =

∞∑
{n},{m}=0

pn0
0

n0!

pn1
1

n1!

pn2
2

n2!

pn3
3

n3!

qm0
0

m0!

qm1
1

m1!

qm2
2

m2!

qm3
3

m3!
× (3.51)

[
∂n0+n1+n2+n3+m0+m1+m2+m3

∂pn0
0 ∂pn1

1 ∂pn2
2 ∂pn3

3 ∂qm0
0 ∂qm1

1 ∂qm2
2 ∂qm3

3

I(p, q,Λ−1)

] ∣∣∣∣∣
p=q=0

(3.52)

52



To getDM
N (Λ) we can write down an expression for f(p, q, λ)r, identify the term containing

pNqM and multiply with appropriate constants. There is always a unique r for a certain

combination of M,N.

3.2.4 Representation matrices for boosts

For a boost in a single direction (e.g. x) with velocity v, we find the same result as in [57]

but generalized to 4 dimensions

I(p, q, v) =
π2

γ
exp

[
2(q0q1 − p0p1)v + 2(p0q0 + p1q1)

√
1− v2 + 2p2q2 + 2p3q3

]
. (3.55)

Following the procedure explained in the previous paragraph, we can identify the coef-

ficients in the expansion over p and q. The transformation matrices for boosts in the x

direction are given by

Dm0m1m3m3
n0n1n2n3

(vx̂) = δ−m0+m1+m2+m3
−n0+n1+n2+n3

δm2
n2
δm3
n3

√
m1!n0!

n1!m0!
×

m0∑
j=0

(
m0

j

)(
n1

m1 − j

)
(−1)n1−m1+j

√
1− v2

m1+m0+1−2j
v2j−m1+n1 .

(3.56)

We can easily also find particular cases for boosts in y and z directions

Dm0m1m3m3
n0n1n2n3

(vŷ) = δ−m0+m1+m2+m3
−n0+n1+n2+n3

δm1
n1
δm3
n3

√
m2!n0!

n2!m0!
×

m0∑
j=0

(
m0

j

)(
n2

m2 − j

)
(−1)n2−m2+j

√
1− v2

m2+m0+1−2j
v2j−m2+n2 (3.57)

Dm0m1m3m3
n0n1n2n3

(vẑ) = δ−m0+m1+m2+m3
−n0+n1+n2+n3

δm1
n1
δm2
n2

√
m3!n0!

n3!m0!
×

m0∑
j=0

(
m0

j

)(
n3

m3 − j

)
(−1)n3−m3+j

√
1− v2

m3+m0+1−2j
v2j−m3+n3 . (3.58)

The matrices (3.56-3.57) are unitary by construction, and they are infinite dimensional as

each index n,m ranges from 0 to ∞. The number N = −n0 + n1 + n2 + n3 is invariant,

and can be used to reduce the matrices into sectors labeled by N . It is however easy to

see that each such sector is in itself infinite dimensional; there is an infinite number of

ways to combine one negative and three positive integers and obtain the same N . For
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example, consider a function f0000(x), and boost it in the x direction. We can apply the

transformation rule (3.19)

f ′0000(x) = f0000(Λ−1x) =
∞∑

m0=0

∞∑
m1=0

∞∑
m2=0

∞∑
m3=0

Dm0m1m3m3
0 0 0 0 (v)fm0m1m2m3(x) (3.59)

=
√

1− v2

∞∑
m0=0

∞∑
m1=0

δm1
m0
vm1fm0m100 (3.60)

=
√

1− v2
(
f0000 + vf1100 + v2f2200 + . . .

)
(3.61)

and find a truly infinite sum on the right hand side. As a curiosity we note that this

particular example has an interesting relation to the Mehler’s formula [59]. We rewrite

f0000(Λ−1x) = f0(y)f0(z)
√

1− v2

∞∑
n=0

vnf0(x)f0(t) (3.62)

and now recognize on the right hand side
∞∑
n=0

vnf0(x)f0(t) =
1

√
π
√

1− v2
exp

(
−1− v

1 + v

(x+ t)2

4
− 1 + v

1− v
(x− t)2

4

)
. (3.63)

We emphasize again that our method defines a homomorphism from any Lorentz

transformation matrix Λ to the representation DM
N (Λ). In the general case of a boost

parametrized by ~v = (vx, vy, vz), the integral (3.32) gives

I = π2
√

1− ~v2 exp

[
2
(
p0q0

√
1− ~v2 − p0p1vx − p0p2vy − p0p3vz + q0q1vx + q0q2vy + q0q3vz

+p1q1

v2
y + v2

z + v2
x

√
1− ~v2

~v2
− p1q2

vxvy
~v2

(1−
√

1− ~v2)− p1q3
vxvz
~v2

(1−
√

1− ~v2)

−p2q1
vxvy
~v2

(1−
√

1− ~v2) + p2q2

v2
x + v2

z + v2
y

√
1− ~v2

~v2
− p2q3

vyvz
~v2

(1−
√

1− ~v2)

−p3q1
vxvz
~v2

(1−
√

1− ~v2)− p3q2
vyvz
~v2

(1−
√

1− ~v2) + p3q3

v2
x + v2

y + v2
z

√
1− ~v2

~v2

)]
.

(3.64)

from which it is possible to extract the representation matrix DM
N (Λ) through the same

procedure as above. The explicit expressions in the general case are somewhat more

complicated.

3.2.5 Representation matrices for rotations

In the case of pure rotations without boosts, we use (Λ−1)µν = (R)µν , with R00 =

−1, R0i = Ri0 = 0, Rij 6= 0, where Rij is an orthogonal rotation matrix. The integral
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(3.32) attains a very simple form

I = π2 exp [2p0q0] exp
[
2pjRjkq

k
]
. (3.65)

Through the same procedure as above, we can write down a general representation matrix

for an arbitrary spatial rotation in 3+1 dimensions

Dm0m1m2m3
n0n1n2n3

(R) = δ−m0+m1+m2+m3
−n0+n1+n2+n3

δm0
n0

√
n1!n2!n3!m1!m2!m3!

(n1 + n2 + n3)!

n1+n2+n3∑
k1=0

k1∑
k2=0

n2+n3∑
k4=0

k4∑
k5=0

×
(
n1 + n2 + n3

k1

)(
k1

k2

)(
k2

n2 + n3

)(
n2 + n3

k4

)(
k4

k5

)(
k5

n3

)
×
(

n3

m2 +m3 + n2 + 2n3 − k1 − k4

)(
m2 +m3 + n2 + 2n3 − k1 − k4

m3 + n2 + 2n3

)
×Rn1+n2+n3−k1

11 Rk1−k2
12 Rk2−n2−n3

13 Rn2+n3−k4
21

×Rk4−k5
22 Rk5−n3

23 R−k1+k2−k4+k5+m2
32 R−k2−k5+m3+n2+2n3

33 . (3.66)

For clarity and further uses in different chapters, we provide the representation matrices

for rotations of angle θ around the x, y and z axes separately.

Dm0m1m2m3
n0n1n2n3

(θx̂) =δ−m0+m1+m2+m3
−n0+n1+n2+n3

δm0
n0
δm1
n1

√
n3!m2!m3!

n2!
×

n2∑
k=0

(
n2

k

)
(−1)m2−k

(m3 − n2 + k)!(m2 − k)!
(cos θ)2k+m3−n2(sin θ)n2+m2−2k

(3.67)

Dm0m1m2m3
n0n1n2n3

(θŷ) =δ−m0+m1+m2+m3
−n0+n1+n2+n3

δm0
n0
δm2
n2

√
n1!m3!m1!

n3!
×

n3∑
k=0

(
n3

k

)
(−1)m3−k

(m1 − n3 + k)!(m3 − k)!
(cos θ)2k+m1−n3(sin θ)n3+m3−2k

(3.68)

Dm0m1m2m3
n0n1n2n3

(θẑ) =δ−m0+m1+m2+m3
−n0+n1+n2+n3

δm0
n0
δm3
n3

√
n2!m1!m2!

n1!
×

n1∑
k=0

(
n1

k

)
(−1)m1−k

(m2 − n1 + k)!(m1 − k)!
(cos θ)2k+m2−n1(sin θ)n1+m1−2k .

(3.69)

Note that one can easily constrain the representation matrix (3.69) to cover only rotations

of Hermite functions on a Euclidean plane by setting m0 = n0 = m3 = n3 = 0, and thus

obtain a representation of SO(2).
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The matrices (3.67-3.69) are also infinite dimensional, but for spatial rotations, due

to the global factor of δm0
n0

, we find a non-negative invariant number n = n1 + n2 + n3.

This makes it obvious that the rotation matrices can be reduced to sectors labeled by n,

which are finite dimensional in themselves, as there is only a finite number of ways to sum

n1, n2, n3 into a non-negative number.

3.2.6 SO(d)

Since the result of the integral (3.65) is written in a way not dependent on the dimension

of space, it can be used to represent rotations of any d−dimensional Euclidean space, after

setting p0 = q0 = 0. An arbitrary element of SO(3) is given by (3.66) with m0 = n0 = 0,

while an arbitrary element of SO(2) is covered by (3.69) with m0 = n0 = m3 = n3 = 0.

The representation matrices in the case of a general dimension d are given by

Dm1...md
n1...nd

= δm1+...+md
n1+...+nd

√
m1!...md!

n1!...nd!
Πd
i,j=1

li,j+1∑
lij=0

(
li,j+1

lij

)
R
li,j+1−lij
ij q, , (3.70)

with
D∑
i=1

(li,j+1 − lij) = mj, li1 = 0, li,d+1 = ni (3.71)

where Rij is an element of SO(d) in the fundamental representation.

3.3 Lorentz Lie algebra in d=4

To find the generators for the Lie algebra, we use the convention

D = exp(Kψ) (3.72)

which gives, symbolically

K =
∂D

∂ψ

∣∣∣
ψ=0

. (3.73)

Since by construction the matrices D were unitary, the generators will be antisymmetric

KT = −K . (3.74)

In the case of boosts, rapidity ψ = tanh−1(v) is the canonical coordinate for any one-

parameter subgroup of boosts in a particular direction of the Lorentz Lie group [60].
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Written out for the 4-dimensional case, the three generators of boosts are

K1
m0m1m2m3
n0n1n2n3

= δ−m0+m1+m2+m3
−n0+n1+n2+n3

δm2
n2
δm3
n3

(
δm1
n1+1

√
(n0 + 1)(n1 + 1)− δm1

n1−1

√
n1n0

)
(3.75)

K2
m0m1m2m3
n0n1n2n3

= δ−m0+m1+m2+m3
−n0+n1+n2+n3

δm1
n1
δm3
n3

(
δm2
n2+1

√
(n0 + 1)(n2 + 1)− δm2

n2−1

√
n2n0

)
(3.76)

K3
m0m1m2m3
n0n1n2n3

= δ−m0+m1+m2+m3
−n0+n1+n2+n3

δm1
n1
δm2
n2

(
δm3
n3+1

√
(n0 + 1)(n3 + 1)− δm3

n3−1

√
n3n0

)
(3.77)

The three rotation generators, obtained with the same convention D = exp(Jθ), are

J1
m0m1m2m3
n0n1n2n3

= δ−m0+m1+m2+m3
−n0+n1+n2+n3

δm1
n1
δm0
n0

(
δm2
n2−1

√
n2(n3 + 1)− δm2

n2+1

√
(n2 + 1)n3

)
(3.78)

J2
m0m1m2m3
n0n1n2n3

= δ−m0+m1+m2+m3
−n0+n1+n2+n3

δm2
n2
δm0
n0

(
δm3
n3−1

√
n3(n1 + 1)− δm3

n3+1

√
(n3 + 1)n1

)
(3.79)

J3
m0m1m2m3
n0n1n2n3

= δ−m0+m1+m2+m3
−n0+n1+n2+n3

δm3
n3
δm0
n0

(
δm1
n1−1

√
n1(n2 + 1)− δm1

n1+1

√
(n1 + 1)n2

)
(3.80)

The Lie algebra satisfies the expected products3

[Ji, Jj] = εijkJk

[Ji, Kj] = εijkKk

[Ki, Kj] = −εijkJk .

(3.82)

This representation of the Lorentz algebra is not irreducible, and it is a non-trivial problem

to reduce it completely. We already noted one level of reducibility, which comes from

fixing the number N = −n0 + n1 + n2 + n3. We leave open the question of reducing the

representation further.

For future reference, we note the values of the Casimir operators of the Lorentz group

SO(1, 3) and the rotation group SO(3). There are two Casimir elements of the Lorentz

group, both are quadratic

c1 =
1

2
MµνMµν =

(
~J 2 − ~K 2

)
(3.83)

c2 = −1

8
εµνρσM

µνMρσ = ~J · ~K . (3.84)

3A more often used convention for the exponential map from the Lie algebra to the Lie group elements

is D = e−iθJ , which gives the familiar products

[Ji, Jj ] = iεijkJk

[Ji,Kj ] = iεijkKk

[Ki,Kj ] = −iεijkJk

(3.81)
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In the representation defined above, they become4

c1
m0m1m2m3
n0n1n2n3

=δ−m0+m1+m2+m3
−n0+n1+n2+n3

×(
− 2δm0

n0
δm1
n1
δm2
n2
δm3
n3
aN

+δm0
n0
δm1
n1
δm2
n2−2δ

m3
n3+2

√
(n2 − 1)n2(n3 + 1)(n3 + 2)

+δm0
n0
δm1
n1
δm2
n2+2δ

m3
n3−2

√
(n2 + 1)(n2 + 2)(n3 − 1)n3

+δm0
n0
δm1
n1+2δ

m2
n2
δm3
n3−2

√
(n3 − 1)n3(n1 + 1)(n1 + 2)

+δm0
n0
δm1
n1−2δ

m2
n2
δm3
n3+2

√
(n3 + 1)(n3 + 2)(n1 − 1)n1

+δm0
n0
δm1
n1−2δ

m2
n2+2δ

m3
n3

√
(n1 − 1)n1(n2 + 1)(n2 + 2)

+δm0
n0
δm1
n1+2δ

m2
n2−2δ

m3
n3

√
(n1 + 1)(n1 + 2)(n2 − 1)n2

+δm0
n0−2δ

m1
n1−2δ

m2
n2
δm3
n3

√
(n0 − 1)n0(n1 − 1)n1

+δm0
n0+2δ

m1
n1+2δ

m2
n2
δm3
n3

√
(n0 + 1)(n0 + 2)(n1 + 1)(n1 + 2)

+δm0
n0−2δ

m1
n1
δm2
n2−2δ

m3
n3

√
(n0 − 1)n0(n2 − 1)n2

+δm0
n0+2δ

m1
n1
δm2
n2+2δ

m3
n3

√
(n0 + 1)(n0 + 2)(n2 + 1)(n2 + 2)

+δm0
n0−2δ

m1
n1
δm2
n2
δm3
n3−2

√
(n0 − 1)n0(n3 − 1)n3

+δm0
n0+2δ

m1
n1
δm2
n2
δm3
n3+2

√
(n0 + 1)(n0 + 2)(n3 + 1)(n3 + 2)

)
(3.85)

with

aN = −3(n1 +n2 +n3)− 2(n1n2 +n2n3 +n3n1 +n0n1 +n0n2 +n0n3)− 3(1 +n0) . (3.86)

4Note that the overall factor δ−m0+m1+m2+m3
−n0+n1+n2+n3

is redundant in the expressions for the Casimir oper-

ators, as this factor’s information is already contained in the product of the Kronecker delta’s in each

term in the bracket.
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The second Casimir operator vanishes

c2
m0m1m2m3
n0n1n2n3

=δ−m0+m1+m2+m3
−n0+n1+n2+n3

×(
−δm0

n0−1δ
m1
n1−1δ

m2
n2+1δ

m3
n3−1

√
n0n1(n2 + 1)n3

+δm0
n0+1δ

m1
n1+1δ

m2
n2+1δ

m3
n3−1

√
(n0 + 1)(n1 + 1)(n2 + 1)n3

+δm0
n0−1δ

m1
n1−1δ

m2
n2−1δ

m3
n3+1

√
n0n1n2(n3 + 1)

−δm0
n0+1δ

m1
n1+1δ

m2
n2−1δ

m3
n3+1

√
(n0 + 1)(n1 + 1)n2(n3 + 1)

−δm0
n0−1δ

m2
n2−1δ

m3
n3+1δ

m1
n1−1

√
n0n2(n3 + 1)n1

+δm0
n0+1δ

m2
n2+1δ

m3
n3+1δ

m1
n1−1

√
(n0 + 1)(n2 + 1)(n3 + 1)n1

+δm0
n0−1δ

m2
n2−1δ

m3
n3−1δ

m1
n1+1

√
n0n2n3(n1 + 1)

−δm0
n0+1δ

m2
n2+1δ

m3
n3−1δ

m1
n1+1

√
(n0 + 1)(n2 + 1)n3(n1 + 1)

−δm0
n0−1δ

m3
n3−1δ

m1
n1+1δ

m2
n2−1

√
n0n3(n1 + 1)n2

+δm0
n0+1δ

m3
n3+1δ

m1
n1+1δ

m2
n2−1

√
(n0 + 1)(n3 + 1)(n1 + 1)n2

+δm0
n0−1δ

m3
n3−1δ

m1
n1−1δ

m2
n2+1

√
n0n3n1(n2 + 1)

−δm0
n0+1δ

m3
n3+1δ

m1
n1−1δ

m2
n2+1

√
(n0 + 1)(n3 + 1)n1(n2 + 1)

)
= 0 . (3.87)

The group SO(3) has a single Casimir element ~J2

( ~J)2 m0m1m2m3
n0n1n2n3

=δ−m0+m1+m2+m3
−n0+n1+n2+n3

δm0
n0
×(

− 2δm1
n1
δm2
n2
δm3
n3

(n1 + n2 + n3 + n1n2 + n2n3 + n3n1)

+δm1
n1
δm2
n2−2δ

m3
n3+2

√
(n2 − 1)n2(n3 + 1)(n3 + 2)

+δm1
n1
δm2
n2+2δ

m3
n3−2

√
(n2 + 1)(n2 + 2)(n3 − 1)n3

+δm1
n1+2δ

m2
n2
δm3
n3−2

√
(n3 − 1)n3(n1 + 1)(n1 + 2)

+δm1
n1−2δ

m2
n2
δm3
n3+2

√
(n3 + 1)(n3 + 2)(n1 − 1)n1

+δm1
n1−2δ

m2
n2+2δ

m3
n3

√
(n1 − 1)n1(n2 + 1)(n2 + 2)

+δm1
n1+2δ

m2
n2−2δ

m3
n3

√
(n1 + 1)(n1 + 2)(n2 − 1)n2

)
. (3.88)

3.3.1 Diagonalization of J3

Since the conventional way of building the little group for a massless field is by choosing

the little momentum to be in the z direction, it is the operator J3 which can tell us about
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the helicities of the field. For that reason we explicitly perform its diagonalization. An

element of the vector space spanned by Hermite functions

Φ =
∞∑

{m}=0

pm0m1m2m3fm0m1m2m3 (3.89)

is an eigenvector of the rotation operator if it satisfies the equation

J3 · Φ = λΦ . (3.90)

In terms of components pm0m1m2m3 , the eigenvalue equation is

J3
m0m1m2m3
n0n1n2n3

pn0n1n2n3 = λpm0m1m2m3 (3.91)

where the Einstein convention for summing over repeated indices was used. Since the

chosen rotation generator leaves invariant indices n0, n3, we suppress them and focus only

on the part of interest

J3
m2m3
n2n3

= δm1+m2
n1+n2

(
δm1
n1−1

√
n1(n2 + 1)− δm1

n1+1

√
(n1 + 1)n2

)
. (3.92)

The eigenvalue equation becomes J3
m2m3
n2n3

Cn1n2 = λCm1m2 , or explicitly

Cm1+1,m2−1
√

(m1 + 1)m2 − Cm1−1,m2+1
√
m1(m2 + 1) = λCm1,m2 . (3.93)

Due to the presence of δm1+m2
n1+n2

in (3.92), the number r = n1 + n2 is invariant under

the action of the rotation generator, which makes any sector of the vector space with a

fixed r finite dimensional. This enables numerical calculations of the coefficients and the

eigenvalues, and we report some of them as an explicit example, in the form Cm1m2
r,λ where

r = m1 +m2 and λ is the eigenvalue.

Cm1m2
0,0 =δm1

0 δm2
0 (3.94)

Cm1m2
1,−i =

1√
2

(δm1
0 δm2

1 − iδm1
1 δm2

0 ) (3.95)

Cm1m2
1,i =

1√
2

(δm1
0 δm2

1 + iδm1
1 δm2

0 ) (3.96)

Cm1m2
2,0 =

1√
2

(δm1
0 δm2

2 + δm1
2 δm2

0 ) (3.97)

Cm1m2
2,−2i =

1

2
(iδm1

0 δm2
2 +

√
2δm1

1 δm2
1 − iδm1

2 δm2
0 ) (3.98)

Cm1m2
2,2i =

1

2
(−iδm1

0 δm2
2 +

√
2δm1

1 δm2
1 + iδm1

2 δm2
0 ) (3.99)
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An exact solution to the diagonalization problem is also possible. We can use the following

redefinition for the coefficients Cm1m2
r,λ which will enable us to rewrite (3.93) in a simpler

way.

Cm1m2
r,k =

(−1)(m2−m1)/4√
(2m1)!!(2m2)!!

Pm1m2
r,k (3.100)

where r = m1+m2, while k will correspond to the eigenvalue λ, with the exact dependency

to be determined. The eigenvalue equation becomes

m1P
m1−1,m2+1
r,k +m2P

m1+1,m2−1
r,k − iλPm1,m2

r,k = 0 (3.101)

Surprisingly, the solution to this equation is given by the Kravchuk matrices [61, 62].

They are defined as

K
(N)
ij =

N∑
k=0

(−1)k
(
j

k

)(
N − j
i− k

)
(3.102)

and we can use them in the following way

Pm1m2
r,k = K

(r)
km1

=
r∑
i=0

(−1)i
(
m1

i

)(
m2

k − i

)
. (3.103)

To prove that this is a solution and to find the eigenvalues, we will first rewrite the

Kravchuk matrices in terms of Kravchuk polynomials. Since there is a connection of

the Kravchuk polynomials to the hypergeometric function, we will be able to re-express

(3.103) using the hypergeometric function. In the last step, we will use known formulas

for the hypergeometric function and prove our solution.

The definition of the Kravchuk polynomials is

k(p)
n (x,N) =

n∑
i=0

(−1)n−i
(
N − x
n− i

)(
x

i

)
pn−i(1− p)i (3.104)

and they are related to the hypergeometric functions as

k(p)
n (x,N) = (−1)npn

(
N

n

)
2F 1(−n,−x,−N ; 1/p) . (3.105)

To use this in (3.103) we set x → m1, N → m1 + m2 = r, N − x → m2, n → k and

p→ 1/2, from which it follows

k
(1/2)
k (m1, r) =

k∑
i=0

(−1)k−i
(
m1

i

)(
m2

k − i

)
2−k (3.106)

=(−1)k2−kK
(r)
km1

(3.107)

=(−1)k2−k
(
r

k

)
2F 1(−k,−m1,−r; 2) . (3.108)
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Therefore

Pm1,m2

r,k =

(
r

k

)
2F 1(−k,−m1,−r; 2) . (3.109)

It is most easily seen from the equation above that the integer parameter k can range

from 0 to r. We now use the consecutive recurrence relation [63] for the hypergeometric

functions :

(b−c) 2F 1(a, b−1, c; z)+(c−2b+(b−a)z) 2F 1(a, b, c; z) = b(z−1) 2F 1(a, b+1, c; z) . (3.110)

To adapt this recurrence relation to our problem, we choose

z = 2, a = −k, b = −m1, c = −r = −m1 −m2 . (3.111)

The recurrence relation becomes

m2 2F 1(−k,−(m1+1),−r; 2)−(r−2k) 2F 1(−k,−m1,−r; 2) = −m1 2F 1(−k,−(m1−1),−r; 2) .

(3.112)

Finally, we can recognize that this is identical to the equation (3.101) with the eigenvalue

λ = i(2k − r)

m1P
m1−1,m2+1
r,k +m2P

m1+1,m2−1
r,k − iλPm1,m2

r,k = 0 . (3.113)

As we have established above, the parameter k ranges from 0 to r, which means that the

eigenvalue λ can for a certain choice of r attain values

λr = −ir,−i(r + 1), ..., i(r − 1), ir . (3.114)

The complete solution to the diagonalization problem (3.93) is then given by

Cm1m2
r,k =

(−1)(m2−m1)/4√
(2m1)!!(2m2)!!

r∑
i=0

(−1)i
(
m1

i

)(
m2

k − i

)
. (3.115)
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Chapter 4

Spacetime content and the particle

spectrum

In chapter 2 we have defined the MHS gauge field model and shown that the Yang-Mills

motivated theory has a perturbatively stable vacuum. The theory was formulated using

fields on a master space, and for that reason it is not directly visible what the spacetime

content of the model is. To understand the spectrum of the theory in terms of Wigner’s

classification of elementary particles we need to perform two operations; primarily, we need

to find a purely spacetime description for the MHS field, i.e. we need to "integrate out"

the auxiliary space dependence and explicitly display the spacetime degrees of freedom.

Secondly, we need to extract the free part of the theory, quantize it, and recognize how

the Casimir elements of the Poincaré group act on the states created by our linear fields.

The latter problem is equivalent to analyzing how the Casimir elements act on-shell on

the polarization structure of solutions to the linear equations of motion as these solutions

have the same transformation properties as wave functions of a quantum theory.

We will display two perspectives on analyzing the spacetime content of the theory.

The first one, a Taylor expansion in the auxiliary space, is conventional and it enables

a direct comparison to historical perspectives on higher spin theory, but it is not well

suited for our purposes. The second perspective, an expansion in terms of orthogonal

functions in the auxiliary space, is novel. We have introduced it for the first time in [1].

It comes out of physical demands, and to understand it we had to develop a new way of

representing the Lorentz group, which is done in chapter 3.

With the spacetime content in our hands, we can proceed to the characterization
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of the particle spectrum. We will present two perspectives here as well. The first one

comes from the analysis of the polarization structure of solutions to the linear equations

of motion when expanded in terms of Hermite functions. The results from chapter 3

will be indispensable in this perspective, and we will present the obtained results. Such

an approach will increase our understanding of the spectrum, but finding all solutions

to the posed problems is very involved. A complete characterization will thus ask for

an alternative approach. The second perspective comes from analyzing the polarization

structure in terms of functions which are solutions to the differential equations posed by

the little group generators. Here, in principle, we will be able to write down a complete

basis and give an explanation of the particle content of the theory.

4.1 Spacetime fields

4.1.1 Taylor expansion

In the history of exploring higher spin fields, there appeared a perspective of packing a

complete tower of higher spin fields into a single structure by using an auxiliary Lorentz

vector as a bookkeeping device (see [64] for a review of various such attempts), akin to

how we defined the symmetry transformation (2.12) to reproduce (2.2). The resulting

object would be of the form

h(x, u) =
∞∑
n=0

hµ1···µn(x)uµ1 . . . uµn (4.1)

where the rank n component fields hµ1···µn(x) were apriori taken to be e.g. Fronsdal fields

of spin s = n, and the resulting object h(x, u) was considered only a generating function.

Our perspective is different as we take our master field to be a fundamental object of

the theory, not only a generating function. Still, by looking at the eq. (2.12), the simplest

assumption would be that a spacetime description of the MHS field is furnished by Taylor

expanding in the auxiliary space

ha(x, u) =
∞∑
n=0

h(n)µ1···µn
a (x)uµ1 . . . uµn . (4.2)

We deliberately use a Latin index for the master field, and Greek indices for variables of

expansion. For reasons mentioned in chapter 2 and which will be examined in more detail

in chapter 7, we are motivated to call the Latin index a frame index. The coefficients in
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the expansion are spacetime fields that are Lorentz tensors of rank n + 1 symmetric in

their n (Greek) indices, and which by (2.57) satisfy equations of motion that are of the

form

2h(n)µ1···µn
a − ∂a∂bh(n)µ1···µn

b +O(h2) = 0 . (4.3)

From (2.44) we can deduce that the gauge transformations obtained from expanding the

gauge parameter as in (2.25) are of the form

δεh
(n)µ1···µn
a = ∂aε

µ1···µn +O(h) (4.4)

We see that linearized EoM for spacetime fields defined by (4.2) have the Maxwell form

with respect to frame indices, but due to their special role, the fields are not of the

type usually considered in the literature (see e.g., [18] for Fronsdal’s formulation, [65]

for a non-local formulation or [66] for a Maxwell-like formulation). A totally symmetric

Lorentz tensor field of rank n satisfying Maxwell-like EoM contains irreducible represen-

tations of the Poincaré group with spins s = n, n − 2, n − 4, . . . , 1 or 0 (see [66]). As

the spacetime fields defined by (4.2) have one frame index which is not symmetrized in

any way with other (Greek) indices, they presumably propagate additional irreducible

Poincaré representations with spins s ≤ n + 1. We shall refer to the spacetime field h(n)
a

as the spin-(n+ 1) field.

The expansion (4.2) leads us to a spacetime description in terms of infinite tower(s)

of HS spacetime fields with unbounded spin. If we restrict the MHS potential to an odd

function in the auxiliary space (2.60) the tower will only contain spacetime fields with even

spin. In [3, 67] it was shown that HS spacetime fields defined by (4.2) linearly couple to

the corresponding HS currents when spacetime matter fields are minimally coupled to the

MHS potential. We will further elaborate on this in chapter 6. Also, it is straightforward

to show that the truncation to n = 0 and n = 1 sectors is consistent both with the HS

transformations and the MHSYM EoM, meaning that on the level of EoM the low-spin

sectors (s = 1 or 2) may be decoupled from the true HS sector (s > 2). These low-spin

truncations are analyzed in more detail in chapter 7.

From the form of the HS equations (4.3) admitting the symmetry (4.4) one could be

tempted to conclude that the theory has ghosts and, as a consequence, that unitarity is

violated. However, such a conclusion is out of reach, since the expansion (4.2) which led

to the linearised EoM (4.3) is not suited for the purpose of obtaining a purely spacetime
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off-shell description. If we substitute (4.2) in the MHSYM action and group the terms

by order of uµ, integrations over the auxiliary space would be divergent at each separate

order. As we mention earlier, proper fall-off conditions in the auxiliary space are required,

and the infinite expansion (4.2) thus has no problems when all (infinite number of terms)

are taken together in calculations, but viewing any particular term within the sum by

itself, be that in the EoM, action or observables, is ill defined. A consequence is that we

cannot obtain regular expressions for classical observables, such as energy and momentum,

if only a finite number of spacetime fields h(n)µ1...µn
a (x) are non-vanishing, in particular

the low-spin (s ≤ 2) on-shell truncation mentioned above is illusory. The problem with

expansion (4.2) is not that it is mathematically incorrect or completely useless, but that

the spacetime fields defined by it cannot be treated as independent. If one insists on an

expansion like (4.2), the existence of a "hair" consisting of an infinite tail of HS spacetime

fields is obligatory in physically acceptable configurations. The main conclusion is that

spacetime fields generated by the expansion (4.2) do not correctly reflect the spectrum

(particle content) of the MHSYM theory.

4.1.2 Orthogonal functions expansion

An alternative to the Taylor expansion above comes from relaxing the notion of how

Lorentz covariance is to be achieved and giving priority to the fact that integrals over the

auxiliary space be finite. The latter argument is a reasonable physical demand we put on

our theory, and it is most easily seen by looking at the energy of the linearized MHSYM

theory

U ≈ 1

2g2
ym

∫
dd−1x

∫
ddu

(∑
j

F0j(x, u)2 +
∑
j<k

Fjk(x, u)2

)
<∞ (4.5)

To achieve finiteness of the integral above, our master fields need to have appropriate

fall-off conditions at large values of the auxiliary space coordinates. We can enforce this

condition by using a complete orthonormal set of functions in the auxiliary space {fr(u)}

formally indexed by some integer parameter r to expand the MHS potential as

ha(x, u) =
∑
r

h(r)
a (x) fr(u) (4.6)

where ∫
ddu fr(u) fs(u) = δrs . (4.7)
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Using such an expansion one arrives at the off-shell space time description with the

quadratic part of the Lagrangian given by

S0[h] = − 1

4g2
ym

∑
r

∫
ddx

(
∂ah

(r)
b − ∂bh

(r)
a

)
ηacηbdδrs

(
∂ch

(s)
d − ∂dh

(s)
c

)
. (4.8)

On the linear level, the gauge symmetry acts on spacetime fields h(r)
a (x) as

δεh
(r)
a (x) ≈ ∂aε

(r)(x) (4.9)

where ε(r)(x) are obtained from MHS gauge parameter ε(x, u) in the same fashion as

in (4.6). The above linearized action neither contains dangerous ghosts (of the kind

that cannot be removed using gauge freedom), nor runaway modes. In a similar way

one can integrate the interacting part of the MHSYM action over the auxiliary space to

obtain a purely spacetime action which is a weakly non-local functional of spacetime fields

{h(r)
a (x)}.

The positive definite product of two basis functions in (4.7) might seem in disagreement

with the condition of Lorentz covariance since intuition usually leads us to expect the

Minkowski metric on the right hand side of equations such as (4.7) if Lorentz covariance

is to be achieved. However, as we prove and explicitly construct in chapter 3, we can

still achieve Lorentz covariance even in the basis of orthogonal functions, but we have to

abandon the notion that the representation will be finite dimensional.

One particularly good choice for the orthonormal basis of functions are multi-dimensional

Hermite functions defined in (3.27). We repeat the definition here with modifications due

to the fact that the natural auxiliary space variables are ua, not ua. Hn(u) are the Hermite

polynomials

Hn(u) = (−1)neu
2 dn

dun
e−u

2

, (4.10)

where the index n can attain arbitrary non-negative integer values. Hermite functions are

defined as

fn(u) =
1√

2nn!
√
π
e−

u2

2 Hn(u) . (4.11)

The multidimensional Hermite function that we will use for the expansion in the auxiliary

space is defined as

fn0···nd−1
(u) = fn0(u0) · · · fnd−1

(ud−1) (4.12)

They satisfy the orthonormality condition∫
du0 · · · dud−1 fn0···nd−1

(u)fm0···md−1
(u) = δm0

n0
· · · δmd−1

nd−1
(4.13)
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The MHS potential ha(x, u) ≡ ha(x
b, uc) is now expanded as

ha(x, u) =
∞∑
{n}=0

hn0···nd−1
a (x)fn0···nd−1

(u) . (4.14)

Following the transformation property (2.47), we can deduce the rules for Lorentz trans-

formations of the component fields hn0···nd−1
a (x). The active transformation is given by

h′a(x, u) = Λa
bhb(Λ

−1x, uΛ) (4.15)

and we can expand both sides of the equation in the Hermite basis
∞∑
{n}=0

h′n0···nd−1
a (x)fn0···nd−1

(u) = Λa
b

∞∑
{m}=0

h
m0···md−1

b (Λ−1x)fm0···md−1
(uΛ) . (4.16)

Due to (4.13) we can multiply both sides with fr0···rd(u), integrate over the auxiliary space,

and conclude

h′r0···rd−1
a (x) = Λa

b

∞∑
{m}=0

Lr0···rd−1
m0···md−1

(Λ)h
m0···md−1

b (Λ−1x) (4.17)

where

Lr0···rd−1
m0···md−1

(Λ) =

∫
du0 · · · dud−1 fr0···rd−1

(u)fm0···md−1
(uΛ) (4.18)

is a representation matrix of the Lorentz group in the space of Hermite functions.1

1We have explicitly constructed the representation matrices in chapter 3, but there is a key difference in

(4.18) compared to the formula (3.28) found in the mentioned chapter. Here, the variables of integration

are auxiliary space coordinates with lower Lorentz indices, while in chapter 3 we worked with variables

with upper Lorentz indices. We now adapt the representation matrices to the current situation. For

simplicity, we restrict to two dimensions, and spell out (3.28)

Dm0m1
n0n1

(Λ) =

∫
du0du1 fm0(u0)fm1(u1)fn0((Λ−1u)0)fn1((Λ−1u)1) (4.19)

while explicitly in (4.18) we have

Lm0m1
n0n1

(Λ) =

∫
du0du1 fm0

(u0)fm1
(u1)fn0

((uΛ)0)fn1
((uΛ)1) . (4.20)

In the mostly plus signature that we are using we can re-express

u0 = −u0, u1 = u1, (uΛ)0 = −(uΛ)0, (uΛ)1 = (uΛ)1 (4.21)

and further we realize

(uΛ)µ = uνΛνµ, (uΛ)µ = uνΛνµ = uνΛν
µ = (Λ−1)µνu

ν = (Λ−1u)µ . (4.22)

With the property of Hermite functions fn(−u) = (−1)nf(u), we can finally relate

Lm0m1
n0n1

(Λ) = (−1)n0+m0Dm0m1
n0n1

(Λ) (4.23)
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The representation matrices can be found in chapter 3. For further convenience we

explicitly write down the generators of the Lorentz group in d = 4 in the infinite dimen-

sional representation, adapted to the purposes of this chapter (here we also make the

operators Hermitean so the rotation generators Ji differ to (3.75 - 3.80) by a global factor

of −i, while the boost generators Ki differ by a global factor of i).

K1
m0m1m2m3
n0n1n2n3

= iδ−m0+m1+m2+m3
−n0+n1+n2+n3

δm2
n2
δm3
n3

(
δm1
n1+1

√
(n0 + 1)(n1 + 1)− δm1

n1−1

√
n1n0

)
(4.24)

K2
m0m1m2m3
n0n1n2n3

= iδ−m0+m1+m2+m3
−n0+n1+n2+n3

δm1
n1
δm3
n3

(
δm2
n2+1

√
(n0 + 1)(n2 + 1)− δm2

n2−1

√
n2n0

)
(4.25)

K3
m0m1m2m3
n0n1n2n3

= iδ−m0+m1+m2+m3
−n0+n1+n2+n3

δm1
n1
δm2
n2

(
δm3
n3+1

√
(n0 + 1)(n3 + 1)− δm3

n3−1

√
n3n0

)
(4.26)

J1
m0m1m2m3
n0n1n2n3

= iδ−m0+m1+m2+m3
−n0+n1+n2+n3

δm1
n1
δm0
n0

(
δm2
n2+1

√
(n2 + 1)n3 − δm2

n2−1

√
n2(n3 + 1)

)
(4.27)

J2
m0m1m2m3
n0n1n2n3

= iδ−m0+m1+m2+m3
−n0+n1+n2+n3

δm2
n2
δm0
n0

(
δm3
n3+1

√
(n3 + 1)n1 − δm3

n3−1

√
n3(n1 + 1)

)
(4.28)

J3
m0m1m2m3
n0n1n2n3

= iδ−m0+m1+m2+m3
−n0+n1+n2+n3

δm3
n3
δm0
n0

(
δm1
n1+1

√
(n1 + 1)n2 − δm1

n1−1

√
n1(n2 + 1)

)
(4.29)

4.1.3 Linear solutions and helicity

In this subsection we focus on the particular number of dimensions d = 4. We can use the

expansion (4.14) and insert it into linearized EoM obtained from (2.57). The component

fields in the expansion satisfy

2hn0n1n2n3
a (x)− ∂a∂bhn0n1n2n3

b (x) = 0 (4.30)

and they enjoy a linearized gauge symmetry of the form

δεh
n0n1n2n3
a (x) = ∂aε

n0n1n2n3(x) . (4.31)

To find out about the helicity of the field, we can write down a plane wave solution to

the EoM (4.30), use the freedom available through (4.31) to fix the gauge and choose a

direction of propagation (conventionally, we choose the z-direction). Such a solution is

given by

han0n1n2n3(x) = εa(±) p
n0n1n2n3eikx (4.32)

The same prefactor (−1)n0+m0 is present in any number of dimensions.
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where k2 = 0, meaning that the field is massless,

εa(±) =
1√
2


0

1

±i

0

 (4.33)

and pn0n1n2n3 is an apriori unconstrained polarization factor in the infinite dimensional

unitary representation of the Lorentz group.

The helicity of a plane wave can be calculated as the eigenvalue of the rotation gener-

ator around the axis of propagation. As we have followed the convention and chosen the

z axis as the axis of propagation, we want to find the eigenvalue of the rotation operator

J3. When acting on (4.32), which is in a mixed representation, each generator will have

two parts; one belonging to the finite dimensional representation (indices a, b), and one

belonging to the infinite dimensional representation (indices n0, ..., n3), i.e.

(J3)m0m1m2m3

n0n1n2n3

a
b = (J3)m0m1m2m3

n0n1n2n3
δab + δm0m1m2m3

n0n1n2n3
(J3)a b (4.34)

where (J3)a b is in the fundamental (vector) representation of the Lorentz group, given

explicitly by

J3 =



0 0 0 0

0 0 −i 0

0 i 0 0

0 0 0 0


. (4.35)

It is then easy to see that (Einstein summation convention assumed)

(J3)m0m1m2m3

n0n1n2n3

a
bε
b
(±) p

n0n1n2n3 = (±1 + λ)εa(±) p
m0m1m2m3 (4.36)

where

pn0n1n2n3 = dn0n3Cn1n2
r,k (4.37)

with dn0n3 arbitrary, Cn1n2
r,k given by (3.115), and λ = (2k− r). As explained in chapter 3,

r = n1 + n2, k = 0, 1, ..., r .

All together, this means that the plane waves (4.32) can carry helicity ±(1 + n1 +

n2),±(n1 + n2),±(n1 + n2 − 1), · · · ± 1(0), depending on n1 + n2 being even or odd. We
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can also notice that a single value of helicity can appear in infinitely many polarization

factors.

Another approach leading to the same conclusion comes from using a complete or-

thonormal basis in the auxiliary space built over spherical harmonics {gr0nlm(u)} which

are by construction diagonal in the rotation generator around the axis of propagation e.g.,

gr0nlm(ū, ẑ) = fr0(ū0)Fn(|ū|)Y m
l (θ, φ) (4.38)

where Fn are Laguerre functions, Y m
l are spherical harmonics, and r0 = 0, 1, 2, . . ., n =

0, 1, 2, . . ., l = n, n− 2, . . . , 1(0), m = −l,−l+ 1, . . . , l. Then the plane wave solutions for

the MHS potential can be expanded in this basis as

εσr0nlm(k) eik·x gr0nlm(ū, k̂) , k · εσr0nlm(k) = 0 , k2 = 0 (4.39)

with σ = ±1. Helicity is given by σ +m, which shows that there is an infinite number of

fluctuations for every value of the helicity.

4.2 Wigner’s classification

By the principle of relativity, isometries of a spacetime are symmetries of a physical

system. Wigner’s classification of elementary particles [13] is thus a classification of

the isometry group (in our case, the Poincaré group) represented on the space of one

particle states. Here we would like to display the basics of Wigner’s method and highlight

the relationship to the plane wave solutions of the linear equations of motion. This

exposition closely follows the first volume of Weinberg’s Quantum Theory of Fields [68]

while additional details can be found in [69, 70, 71]

The Lie algebra of the Poincaré group consists of 10 generators, whose Lie brackets

are given as:

[Pµ, Pν ] =0 (4.40)

i[Mµν , Pρ] =ηνρPµ − ηµρPν (4.41)

i[Mµν ,Mρσ] =ηµσMνρ − ηµρMνσ + ηνρMµσ − ηνσMµρ (4.42)

Building a representation of the Poincaré group on a space of one-particle states can be

done by the method of induced representations. In d = 4, the Poincaré group has a
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quadratic and a quartic Casimir element

C2 = −P µPµ = −P 2, C4 = W µWµ = W 2 (4.43)

where the translation generators are P µ, with the Pauli-Lubanski vector W µ defined as

Wρ =
1

2
εµνρσM

µνP σ , (4.44)

and the Lorentz generators denoted by Mµν . The orbital part of the Lorentz generators

(∼ XµP ν −XνP µ) does not contribute to the Pauli-Lubanski vector.

It is natural to label the single particle states with the values of the Casimir elements.

Further, since momentum operators form an abelian subgroup, we work with their eigen-

vectors and label them as

|p2, µ2, p, σ〉 (4.45)

such that

P 2 |p2, µ2, p, σ〉 = p2 |p2, µ2, p, σ〉 , W 2 |p2, µ2, p, σ〉 = µ2 |p2, µ2, p, σ〉 (4.46)

and

P µ |p2, µ2, p, σ〉 = pµ |p2, µ2, p, σ〉 (4.47)

with σ labeling other degrees of freedom which are to be determined. For each value of

p2 we can choose a standard momentum kµ such that any other pµ with the same value

of p2 can be obtained by a Lorentz transformation

pµ = S(p)µνk
ν . (4.48)

For each such choice of kµ there is a set of Lorentz transformations leaving kµ invariant

Bµ
νk

ν = kµ (4.49)

which form a subgroup of the Lorentz group named the little group corresponding to

the standard momentum kµ. It can be shown [69, 72] that the generators of the little

group are given by the components of the Pauli-Lubanski vector with the specific standard

momentum

Wρ =
1

2
εµνρσM

µνkσ . (4.50)

Since Wµk
µ = 0, we know that the Lie algebra of any little group in d = 4 will be three-

dimensional. The possibilities are given in table 4.1, and we are primarily intersted in the

positive energy (p0 > 0) options.
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C2 = −p2 Standard momentum kµ Little group Example

p2 = −m2 (±m, 0, 0, 0) SO(3) W± and Z bosons

p2 = 0 (±ω, 0, 0, ω) ISO(2) photons

p2 = n2 (0, 0, 0, n) SO(2, 1)↑ tachyons

p2 = 0 (0, 0, 0, 0) SO(3, 1)↑ vacuum

Table 4.1: Representations of the Poincaré group

While translations act on the basis vectors as

U(a) |p2, w2, p, σ〉 = e−ipa |p2, w2, p, σ〉 , (4.51)

it can be shown that homogeneous Lorentz transformation act as

U(Λ) |p2, w2, p, σ〉 = N
∑
σ′

Dσ′σ(W (Λ, p)) |p2, w2,Λp, σ′〉 , (4.52)

where N is a normalization factor andW (Λ, p) = S−1(Λp)ΛS(p) is an element of the little

group for a particular standard momentum. Matrices Dσ′σ(W ) furnish an irreducible

representation of the little group, and their construction is then sufficient to properly

characterize the one particle state. For each choice of standard momentum, the quartic

Casimir of the Poincaré group is equal to the Casimir operator of the little group. We

will be especially interested in the massless case, and for that reason we focus in more

detail on the group ISO(2).

The Lorentz generators Mµν can be unpacked so that the generators of rotations Ji

and boosts Ki can individually be recognized as

J1 = M23, J2 = M31, J3 = M12 (4.53)

K1 = M10, K2 = M20, K3 = M30 (4.54)

If we choose the standard momentum as kµ = (ω, 0, 0, ω), we can explicitly find the

components of the Pauli-Lubanski vector which are the generators of the little group for

the case of massless particles

W µ = ω(J3, J1 −K2, J2 +K1, J3) . (4.55)

It is convenient to name the generators

A = ω(J1 −K2), B = ω(J2 +K1) . (4.56)
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By knowing the commutation relations of the Lorentz algebra

[Ji, Jj] = iεijkJk, [Ji, Kj] = iεijkKk, [Ki, Kj] = −iεijkJk (4.57)

it is easy to check that A,B and J3 span the Lie Algebra iso(2)

[A,B] = 0, [J3, A] = iB, [J3, B] = −iA . (4.58)

The quartic Casimir in this choice of standard momentum is then given by

WµW
µ ≡ W 2 =ω2(J1 −K2)2 + ω2(J2 +K1)2 (4.59)

=(A2 +B2) (4.60)

and naturally it commutes with all elements of the little group algebra

[W 2, A] = [W 2, B] = [W 2, J3] = 0 . (4.61)

In appendix A.2 we report on how to build a unitary representation of the Lie algebra

iso(2), and the Lie group ISO(2). Here we point out its main features.

The faithful irreducible unitary representations of the little group ISO(2) which have

a non-vanishing value of the Casimir operator W 2 are necessarily infinite dimensional. If

written in a basis diagonal in the rotation operator around the standard momentum, it

can be seen that each irreducible representation contains an infinite tower of helicity states

mixing under Lorentz transformations. For that reason, such representations are usually

named "infinite-spin". A different basis choice is possible, as we spell out in the appendix

A.2, which motivates a different name - "continuous spin". This class of representations

was originally considered by Wigner to be unsuitable for a physical use, since the infinite

tower of helicities would have to correspond to an infinite heat capacity. However in the

recent years there has been a revived interest for this class of particles and in analyzing

their kinematic and dynamical aspects with more scrutiny ([73, 74, 75, 76, 77, 78]).

There is also a possibility of a non-faithful representation of the little group ISO(2)

where the operators A,B act trivially. In this caseW 2 gives a vanishing value and the little

group becomes isomorphic to SO(2). The representations are one-dimensional, with the

only non-trivial operator being the rotation around the standard momentum. The eigen-

vectors of this rotation are the ordinary helicity states describing particles corresponding

to massless fields of a fixed spin such as the Maxwell field, linear Einstein gravity, higher

spin fields of the Fronsdal type, etc.
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There is an important relationship between the matrices Dσ′σ(W ) which, as we have

seen, act on the one particle states, and the Lorentz transformation matrices we use

to express quantum field components in different inertial frames. From the creation and

annihilation operators we can build a quantum field, where r stands for any set of Lorentz

indices

hr(x) =
∑
σ

d3p
(2π)3/2

√
2ωp

(
ur(p, σ)a(p, σ)e−ipx + vr(p, σ)a†(p, σ)eipx

)
. (4.62)

Under a Lorentz transformation it behaves as

U(Λ)hr(x)U−1(Λ) =
∑
s

L(Λ−1)rshs(Λx) (4.63)

where L(Λ) is a representation of the Lorentz group (finite or infinite-dimensional) on

the space of fields. This equation can be seen as a compatibility condition [70, 68, 72]

between the infinite-dimensional unitary Fock-space representation on the one particle

states and the representation of the homogeneous Lorentz group on the space of fields.

In a straightforward manner, it can be brought down to compatibility equations for the

polarization functions in the standard momentum k∑
σ′

ur(k, σ′)Dσ′σ(W−1) =
∑
s

L(W−1)rsus(k, σ) (4.64)

∑
σ′

vr(k, σ′)D∗σ′σ(W−1) =
∑
s

L(W−1)rsvs(k, σ) . (4.65)

On the level of the algebra of the little group we have∑
σ′

ur(k, σ′)Jσ′σ =
∑
s

Jrsus(k, σ) (4.66)

∑
σ′

vr(k, σ′)J ∗σ′σ = −
∑
s

Jrsvs(k, σ) . (4.67)

which follows from the expansion Dσ′σ ≈ δσσ′ + iθJσσ′ , and Lrs ≈ δrs + iθJrs.

The polarization functions in the standard momentum thus carry the representation

of the little group and contain also the information about the quartic Casimir operator.

By classifying polarization functions of a certain field, through solving the eigensystem∑
s

L
(
W 2
)rs

us(k, σ) = µ2ur(k, σ) , (4.68)

where µ2 on the right hand side is constant due to (4.46), we can learn about supported

particle types, i.e values of the Casimir operatorW 2, associated with that particular field.
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4.3 The quartic Casimir in the Hermite expansion

Our first goal is to build an explicit expression for (4.60) for the case of the plane wave

solution (4.32), and then attempt to find possible eigenvalues. For the sake of the clarity

of argument, we will demonstrate the procedure on the Maxwell field before following

these steps for the MHSYM component field.

In the case of electrodynamics, a plane-wave solution of the equations

2Aµ − ∂µ∂ · A = 0 (4.69)

with momentum oriented in the z direction kµ = (ω, 0, 0, ω) is given by

Aµ(x) = εµeikx =
1√
2


0

1

±i

0

 eikx . (4.70)

Since Maxwell’s field is a Lorentz vector, we can explicitly use the vector representation

of the Lorentz generators

(Jµν)α β = i
(
ηµαδνβ − ηναδ

µ
β

)
. (4.71)

Using the identifications (4.53) and the result (4.60) the quartic Casimir element is ex-

plicitly given by

W 2 = ω2


−2 0 0 2

0 0 0 0

0 0 0 0

−2 0 0 2

 (4.72)

so it is readily visible through application of (4.68) that there is a single eigenvalue of the

quartic Casimir, and it is vanishing

(
W 2
)α

β · Aβ = 0 .

Quartic Casimir of the on-shell MHS field

As already stated, the MHS field is in a mixed representation of the Lorentz group - a direct

product of the finite dimensional vector representation and the infinite dimensional unitary

representation. The generators will be a direct sum of two parts; one belonging to the finite
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dimensional representation (indices a, b), and one belonging to the infinite dimensional

representation (indices n0, n1, n2, n3 in case of the Hermite expansion in d = 4), e.g.

(J1)m0m1m2m3

n0n1n2n3

a
b = (J1)m0m1m2m3

n0n1n2n3
δab + δm0m1m2m3

n0n1n2n3
(J1)a b (4.73)

A compactified notation uses a capital N instead of the tuple {n0n1n2n3}

(J1)MN
a
b = (J1)MN δab + δMN (J1)a b . (4.74)

The Casimir element (4.60) is then given by (repeated indices summed over)

(
W 2
)M
N

a
c =ω2

(
Ja1 bJ

b
1c + Ja2 bJ

b
2c +Ka

1 bK
b
1c +Ka

2 bK
b
2c − 2Ja1 bK

b
2c + 2Ka

1 bJ
b
2c

)
δMN

+ω2
(
J1

M
R J1

R
N + J2

M
R J2

R
N +K1

M
RK1

R
N +K2

M
RK2

R
N − 2J1

M
RK2

R
N + 2K1

M
R J2

R
N

)
δac

+ω2
(

2Ja1 cJ1
M
N + 2Ja2 cJ2

M
N + 2Ka

1 cK1
M
N + 2Ka

2 cK2
M
N

−2Ka
2 cJ1

M
N − 2K2

M
N J

a
1 c + 2Ka

1 cJ2
M
N + 2K1

M
N J

a
2 c

)
q, . (4.75)

The first bracket contains the finite-dimensional vector representation of the W 2, and it

is multiplied by δMN . As in the case of a finite dimensional massless vector field, this will

give a 0 when acting on the polarization vector εa found in (4.32).

The mixed contributions to the Casimir can be rewritten as

(W 2
mixed)

M
N
a
c =2AacA

M
N + 2Ba

cB
M
N

where A,B were defined in (4.56). When Aac or Ba
c act on the polarization vector εa,

the result will be proportional to the standard momentum, e.g for Aac

i


0 0 −1 0

0 0 0 0

−1 0 0 1

0 0 −1 0


1√
2


0

1

±i

0

 =
±1√

2


1

0

0

1

 ∝ ka (4.76)

i.e. a pure gauge contribution in the finite-dimensional sector. A non-trivial eigenvalue of

the quartic Casimir for the MHS field can thus come only from the second line of (4.75),

which contains the infinite-dimensional part

(
W 2
inf

)M
N δac = ω2δac (J1

M
R J1

R
N + J2

M
R J2

R
N +K1

M
RK1

R
N +K2

M
RK2

R
N − 2K2

M
R J1

R
N + 2J2

M
RK1

R
N) .

(4.77)
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We now use the explicit expressions for the infinite-dimensional generators (4.24-4.29),

and arrive at the result written out without the use of the compactified notation.

(
W 2
inf

)m0m1m2m3

n0n1n2n3
=ω2δ−m0+m1+m2+m3

−n0+n1+n2+n3
×(

2δm0
n0
δm1
n1
δm2
n2
δm3
n3

(1 + n0 + n3)(1 + n1 + n2)

−δm0
n0
δm1
n1
δm2
n2+2δ

m3
n3−2

√
(n2 + 1)(n2 + 2)(n3 − 1)n3

−δm0
n0
δm1
n1
δm2
n2−2δ

m3
n3+2

√
(n2 − 1)n2(n3 + 2)(n3 + 1)

−δm0
n0
δm1
n1−2δ

m2
n2
δm3
n3+2

√
(n1 − 1)n1(n3 + 1)(n3 + 2)

−δm0
n0
δm1
n1+2δ

m2
n2
δm3
n3−2

√
(n1 + 1)(n1 + 2)(n3 − 1)n3

−δm0
n0+2δ

m1
n1+2δ

m2
n2
δm3
n3

√
(n0 + 1)(n0 + 2)(n1 + 1)(n1 + 2)

−δm0
n0−2δ

m1
n1−2δ

m2
n2
δm3
n3

√
(n0 − 1)n0(n1 − 1)n1

−δm0
n0+2δ

m1
n1
δm2
n2+2δ

m3
n3

√
(n0 + 1)(n0 + 2)(n2 + 2)(n2 + 1)

−δm0
n0−2δ

m1
n1
δm2
n2−2δ

m3
n3

√
(n0 − 1)n0(n2 − 1)n2

+2δm0
n0+1δ

m1
n1
δm2
n2+2δ

m3
n3−1

√
(n0 + 1)(n2 + 1)(n2 + 2)n3

−2δm0
n0+1δ

m1
n1
δm2
n2
δm3
n3+1(

√
(n0 + 1)n2n2(n3 + 1) +

√
(n0 + 1)(n1 + 1)(n1 + 1)(n3 + 1))

−2δm0
n0−1δ

m1
n1
δm2
n2
δm3
n3−1(

√
n0(n2 + 1)(n2 + 1)n3 +

√
n0n1n1n3)

+2δm0
n0−1δ

m1
n1
δm2
n2−2δ

m3
n3+1

√
n0(n2 − 1)n2(n3 + 1)

+2δm0
n0+1δ

m1
n1+2δ

m2
n2
δm3
n3−1

√
(n0 + 1)(n1 + 1)(n1 + 2)n3

+2δm0
n0−1δ

m1
n1−2δ

m2
n2
δm3
n3+1

√
n0(n1 − 1)n1(n3 + 1)

)
. (4.78)
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When acting on the field polarization factors pn0n1n2n3 in (4.32), we get

(
W 2
inf

)
m0m1m2m3
n0n1n2n3

pn0n1n2n3 =

2pm0m1m2m3 [(1 +m0 +m3)(1 +m1 +m2)]

−pm0m1(m2−2)(m3+2)
√

(m2 − 1)m2(m3 + 1)(m3 + 2)

−pm0m1(m2+2)(m3−2)
√

(m2 + 1)(m2 + 2)m3(m3 − 1)

−pm0(m1+2)m2(m3−2)
√

(m1 + 1)(m1 + 2)(m3 − 1)m3

−pm0(m1−2)m2(m3+2)
√

(m1 − 1)m1(m3 + 1)(m3 + 2)

−p(m0−2)(m1−2)m2m3
√

(m0 − 1)m0(m1 − 1)m1

−p(m0+2)(m1+2)m2m3
√

(m0 + 1)(m0 + 2)(m1 + 1)(m1 + 2)

−p(m0−2)m1(m2−2)m3
√

(m0 − 1)m0m2(m2 − 1)

−p(m0+2)m1(m2+2)m3
√

(m0 + 1)(m0 + 2)(m2 + 1)(m2 + 2)

+2p(m0−1)m1(m2−2)(m3+1)
√
m0(m2 − 1)m2(m3 + 1)

−2p(m0−1)m1m2(m3−1)
√
m0m2m2m3)

−2p(m0+1)m1m2(m3+1)
√

(m0 + 1)(m2 + 1)(m2 + 1)(m3 + 1)

+2p(m0+1)m1(m2+2)(m3−1)
√

(m0 + 1)(m2 + 1)(m2 + 2)m3

−2p(m0−1)m1m2(m3−1)
√
m0(m1 + 1)(m1 + 1)m3

+2p(m0−1)(m1−2)m2(m3+1)
√
m0(m1 − 1)m1(m3 + 1)

+2p(m0+1)(m1+2)m2(m3−1)
√

(m0 + 1)(m1 + 1)(m1 + 2)m3

−2p(m0+1)m1m2(m3+1)
√

(m0 + 1)m1m1(m3 + 1) . (4.79)

4.3.1 Casimir eigenvalue problem

To learn about the particle spectrum of our theory, following (4.68), we should solve the

eigensystem (
W 2
inf

)m0m1m2m3

n0n1n2n3
pn0n1n2n3 = µ2pm0m1m2m3 . (4.80)

Even before explicitly trying to find eigenvectors and eigenvalues in (4.80), we can conclude

from (4.79) that there will exist non-trivial states, i.e. the expression (4.79) shows that a

polarization factor pn0n1n2n3 used in (4.32) will in general not give a vanishing eigenvalue,

through which we can confirm that the MHS formalism supports a description of the

infinite spin particles.
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One way of tackling the eigenvalue problem is by computer assisted iterative solving,

which could give us a hint for an appropriate ansatz. It can be seen by the structure of the

Casimir that any eigenvector should necessarily have an infinite number of components2,

so we could only hope for hints coming from a truncated calculation. The Casimir operator

can be rewritten in a basis of eigenvectors of J3 which were found in chapter 3, but the

complexity of the problem remains. So far, we are left with finding educated guesses and

one of them comes from the "massless limit" of eigenvectors of J2.

Massless limit of massive states

In the case of massive particles, the little group is SO(3), and the Casimir operator is

simply ~J2. An appropriately performed Inönü-Wigner contraction of a representation of

SO(3) can give us a representation of ISO(2), which is the little group in the case of

massless particles. The limiting procedure entails the limits m→ 0, v → 1 while keeping

fixed mγ = m√
1−v2 = ω.

The simplest simultaneous eigenvector of ~J2 (3.88) and J3 (4.29, 3.80) in the repre-

sentation over Hermite functions is

Φn=0,s=0,λ=0(u) = δn0
0 δn1

0 δn2
0 δn3

0 fn0n1n2n3(u) (4.81)

where n = n1 + n2 + n3 and s corresponds to the eigenvalue of ~J2 = s(s + 1) while λ is

an eigenvalue of J3. We can boost (4.81) with velocity v in the z direction to prepare it

for the massless limit. The transformation matrices for a finite boost are (3.58, 4.23)

Dm0m1m2m3
n0n1n2n3

(v) =

√
m3!n0!

n3!m0!
δ−m0+m1+m2+m3
−n0+n1+n2+n3

δm1
n1
δm2
n2
×

m0∑
j=0

(
m0

j

)(
n3

m3 − j

)
(−1)j

√
1− v2

m3+m0+1−2j
v2j−m3+n3 . (4.82)

Boosting the chosen eigenvector we get

∞∑
n0,n1,n2,n3=0

Dm0m1m2m3
n0n1n2n3

(v) · δn0
0 δn1

0 δn2
0 δn3

0 = δm1
0 δm2

0 δm0
m3

√
1− v2(−v)m3 . (4.83)

Since mγ → ω while v → 1, the limiting procedure gives us

pn0n1n2n3 → δm1
0 δm2

0 δm0,m3(−1)m3 . (4.84)
2Terms such as δm0

n0−1δ
m1
n1
δm2
n2
δm3
n3−1 will always simultaneously raise the values of the 0th and 3rd index,

thus a closed solution cannot have a finite number of terms.
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A more general case could be an eigenvector of J3 and J2 of the form

Φn=n,s=n,λ=n(u) = zn0Cn1n2
n,n δn3

0 fn0n1n2n3(u) . (4.85)

In the sector n1 + n2 + n3 = n where s = n and λ = n, there is only one such vector,

and the factor Cn1n2
n,n is given in (3.115). The index n3 has to be equal to 0, while n0 is

arbitrary (or fixed by a choice of N = −n0 + n), meaning that the factor zn0 must have

the form

zn0 = const. · δn0
n−N . (4.86)

We boost (4.85) in the z direction to prepare it for the massless limit.

Dm0m1m2m3
n0n1n2n3

(v)zn0Cn1n2
n,n δn3

0 =

√
m0!

m3!(m0 −m3)!
zm0−m3Cm1m2

m1+m2,m1+m2

√
1− v2

m0−m3+1
(−v)m3

(4.87)

Eigenvector candidates

Motivated by (4.84) we can take as a first ansatz

pn0n1n2n3 = δn1
0 δn2

0 δn0,n3cn3 . (4.88)

Inserting it into (4.78), we obtain

(
W 2
inf

)m0m1m2m3

n0n1n2n3
δn1

0 δn2
0 δn0,n3cn3 =(
δm0,m3δm1

0 δm2
0 (−2cm3(1 + 2m3) + 2cm3−1m3 + 2cm3+1(m3 + 1))

+δm0,m3+2δm1
0 δm2

2

√
2(m3 + 1)(m3 + 2)(cm3+2 + cm3 − 2cm3+1)

+δm0,m3+2δm1
2 δm2

0

√
2(m3 + 1)(m3 + 2)(cm3+2 + cm3 − 2cm3+1)

)
=− µ2δm1

0 δm2
0 δm0,m3cm3 .

For the eigensystem to be valid we need to satisfy the two equations

2cm3(1 + 2m3)− 2cm3−1m3 − 2cm3+1(m3 + 1) = µ2cm3 (4.89)

cm3+2 + cm3 − 2cm3+1 = 0 (4.90)

which is solved only for µ2 = 0, and gives the solution for the coefficient

cm3 = c0 (4.91)
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A solution of (4.80) is then given by

pn0n1n2n3 = c0δn1
0 δn2

0 δn0,n3 (4.92)

which is simultaneously an eigenvector of J3 with helicity λ = 0.

The result in (4.87) motivates another ansatz of the form

pm0m1m2m3 =

√
m0!

m3!(m0 −m3)!
δm0−m3
r−M Cm1m2

r,r wm3 . (4.93)

A straightforward option is to choose M = r, and the proposed ansatz becomes

pn0n1n2n3 = δn0,n3Cn1n2
r,r wn3 . (4.94)

Upon inserting into (4.80) we obtain two independent equations for wm3

wm3(1 + 2m3)− wm3−1m3 − wm3+1(m3 + 1) = − µ2

2(1 + r)
wm3 (4.95)

wm3+2 + wm3 − 2wm3+1 = 0 (4.96)

The solution is given by µ2 = 0 and

wm3 = w0 . (4.97)

This gives the polarization factor

pn0n1n2n3 = δn0,n3Cn1n2
r,r (4.98)

which is simultaneously an eigenvector of J3 with helicity λ = r. The eigenvector (4.92) is

thus a special case of (4.98). The norm of this solution is not finite and we can explicitly

see that in the sum over Hermite functions in the auxiliary space, the eigenvector will

contain a delta function. For instance, from (4.92) and the completeness identity of

Hermite functions we find
∞∑

n0,n1,n2,n3=0

δn0,n3δn1
0 δn2

0 fn0(u0)fn1(u1)fn2(u2)fn3(u3) = δ(2)(u0 − u3)e−
u2

1+u2
2

2 . (4.99)

Through this approach we were able to obtain a solution to the equation (4.80) with

a vanishing eigenvalue, and with an arbitrary integer helicity. This would correspond to

an ordinary higher-spin massless field, but due to the infinite norm, the observables such

as energy would not be finite. The non-finiteness of the norm could be a reflection of

the fact that the eigenvalues µ2 are continuous, and a different approach might be more

suited for a complete characterization of the particle spectrum.
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4.4 The quartic Casimir for an on-shell master field

Consider the linearized equations of motion one obtains if the integration over the auxiliary

space is not performed prior to extremizing the action

2ha(x, u)− ∂a∂bhb(x, u) = 0 . (4.100)

As in the previous section, we can fix the gauge to ∂aha(x, u) = 0, and consider solutions

representing plane waves directed along the z axis

ha(x, u) = εaΦ(u)eikx , (4.101)

where ka = (ω, 0, 0, ω) and εa = 1√
2
(0, 1,±i, 0). Now, let’s consider an active Lorentz

transformation following the transformation properties (2.47)

h′a(x
c, ud) = Λa

bhb((Λ
−1x)c, (u · Λ)d) (4.102)

If we expand the Lorentz transformation up to the first order

Λa
b ≈ δab + iψKa

b

with ψ the expansion parameter3, then (Λ−1)ab ≈ δab − iψKa
b and since (Λ−1)ab = Λb

a it

is true that Ka
b = −Kb

a. Through a simple expansion we get

h′a(x
c, ud) ≈ ha(x, u) + iψ(Ka

bhb(x, u) +Kc
bxc∂xb ha(x, u) +Kb

cub∂
c
uha(x, u)) . (4.103)

In case of our solution (4.101), the action of a generator of the Lorentz group, where

D(K) is a representation of the generator K, becomes

D(K) · ha(x, u) =
(
Ka

bεaΦ(u) +Kc
bxckbΦ(u) +Kb

cua∂
c
uΦ(u)εb

)
eikx . (4.104)

We would now like to examine the behavior of (4.101) under the action of the gen-

erators A,B of the little group iso(2) with the reference momentum ka = (ω, 0, 0, ω). If

we are able to find eigenfunctions of the mentioned generators, they will be the basis for

the representation of the little group. Since A,B commute, the choice of finding their

eigenfunctions is analogous to the plane-wave basis demonstrated in appendix A.2.
3The parameter can be an angle if Λ is a rotation, or rapidity in case of boosts.
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It is straightforward to find the explicit vector representations for the operators A =

J1 −K2 and B = J2 +K1.

A = ω



0 0 i 0

0 0 0 0

i 0 0 i

0 0 −i 0


, B = ω



0 −i 0 0

−i 0 0 −i

0 0 0 0

0 0 i 0


. (4.105)

We see from (4.104) the three possible terms, of which only one will be non-trivial.

Since Aabkb = Ba
bk
b = 0, and Aabεb ∝ kb, Ba

bε
b ∝ kb which is a pure gauge contribution,

the only term remaining in the equation (4.104) in case of the generators A and B is the

last one, of the form Kb
cub∂

c
uΦ(u). We now explicitly state the differential equations for

A and B.

A · Φ(u) =uaA
a
b∂
b
uΦ(u) (4.106)

=iω(ut − uz)
∂

∂uy
+ iωuy(

∂

∂ut
+

∂

∂uz
)Φ(u) . (4.107)

In null-coordinates u+ = ut + uz, u− = ut − uz it is simplified to

A · Φ(u) = iω

[
u−

∂

∂uy
+ 2uy

∂

∂u+

]
Φ(u+, u−, ux, uy) . (4.108)

The equation for B is similarly

B · Φ(u) = −iω
[
u−

∂

∂ux
+ 2ux

∂

∂u+

]
Φ(u+, u−, ux, uy) . (4.109)

Following (4.68) and (A.44)-(A.45), we want to find functions Φ(u) that satisfy the eigen-

system

A · Φ(u) = aΦ(u) (4.110)

B · Φ(u) = bΦ(u) . (4.111)

The solutions to these equations for A and B separately are

ΦA(u) = exp

(
−iauy
ωu−

)
G1

(
u−, ux,

−(ut)
2 + (uy)

2 + (uz)
2

2

)
(4.112)

ΦB(u) = exp

(
ibux
ωu−

)
G2

(
u−, uy,

−(ut)
2 + (ux)

2 + (uz)
2

2

)
, (4.113)

where G1 and G2 are arbitrary functions of their respective variables. We can write down

a simultaneous solution with G an arbitrary function as

Φabr(u) = exp

(
i
bux − auy
ωu−

)
Gr (u−, uµu

µ) (4.114)
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where a, b stand for the eigenvalues of A and B, and r stands for any additional indices

that may be used to discriminate between different solutions. The explicit representation

for W 2 is

W 2 = A2 +B2 (4.115)

=− ω2

(
u2
−

(
∂2

∂u2
x

+
∂2

∂u2
y

)
+ 4u−

(
ux

∂2

∂ux
+ uy

∂

∂uy
+ 1

)
∂

∂u+

+ 4(u2
x + u2

y)
∂2

∂u2
+

)
(4.116)

and we can immediately see that solutions (4.114) are eigenfunctions of the Casimir

operator

W 2 · Φ(u) = (a2 + b2)Φ(u) = µ2Φ(u) . (4.117)

As expected from the properties of the little group, the eigenvalues of the Casimir W 2 are

non-negative. Similar solutions were obtained in [74], in examining a scalar master field

as a wavefunction of the continuous spin particle.

A complete orthonormal basis in the auxiliary space can be built from functions of the

form (4.114), for a specific choice of the standard momentum. One possibility is to define

fabnl(u) =
1√
2π2

exp

(
i
bux − auy
ωu−

)
hn(ωu−)hl(ωu−u

2) (4.118)

where hn(x) are any orthonormal and complete functions defined on R, such as Hermite

functions.

We prove that the functions fabnl(u) are orthonormal:∫
d4u fa′b′n′l′(u)∗ fabnl(u) =

1

(2π)2

∫ ∞
−∞

du+ hn′(ωu+)∗ hn(ωu+) (4.119)

×
∫ ∞
−∞

du1

∫ ∞
−∞

du2 e
−i (a−a′)u2−(b−b′)u1

ωu+

×
∫ ∞
−∞

du− hl′(ω u+u
2)∗ hl(ωu+u

2) (4.120)

We can use a substitution

w ≡ ω u+u
2 = ω u+(u+u− − u2

1 − u2
2) (4.121)

which respects w(u− = ±∞) = ±∞ to write the first integral∫ ∞
−∞

du− hl′(ω u+u
2)∗ hl(ω u+u

2) =
1

ω(u+)2

∫ ∞
−∞

dw hl′(w)∗ hl(w) =
δl′l

ω(u+)2
. (4.122)
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The second integral gives∫ ∞
−∞

du1

∫ ∞
−∞

du2 e
−i (a−a′)u2−(b−b′)u1

ωu+ = (2πωu+)2 δ(a′ − a) δ(b′ − b) (4.123)

and the third integral we have∫ ∞
−∞

du+ hn′(ωu+)∗ hn(ωu+) =
1

ω2
δnn′ . (4.124)

Finally, we confirm that the basis functions are orthonormal∫
d4u fa′b′n′l′(u)∗ fabnl(u) = δ(a′ − a) δ(b′ − b) δl′l δn′n (4.125)

We can also prove that the choice (4.118) is complete.

∞∑
n=0

∞∑
l=0

∫ ∞
−∞

da

∫ ∞
−∞

db fabnl(u
′)∗ fabnl(u) =

1

2π2

∑
l

hl(ωu
′
+u
′2)∗ hl(ωu+u

2)

×
∫ ∞
−∞

da

∫ ∞
−∞

db e
i
a(u′2−u2)−b(u′1−u1)

ω u+

∑
n

hn(ωu′+)∗ hn(ωu+) (4.126)

Elementary functions such as Hermite satisfy completeness relations

∞∑
n=0

hn(ωu′+)∗ hn(ωu+) = δ(ω(u′+ − u+)) =
1

|ω|
δ(u+ − u′+) (4.127)

∞∑
l=0

hl(ωu
′
+u
′2)∗ hl(ωu+u

2) = δ(ωu+u
2 − ωu′+u′2) . (4.128)

With the exponential functions we have∫ ∞
−∞

db e
i
b(u1−u′1)

ω u+ = (2π|ωu+|)δ(u1 − u′1) (4.129)∫ ∞
−∞

db e
i
a(u′2−u2)

ω u+ = (2π|ωu+|)δ(u2 − u′2) . (4.130)

We can insert the results into (4.126) and obtain∑
n

∑
l

∫
da

∫
db fabnl(u

′)∗ fabnl(u) = (4.131)

=2ω(u+)2 δ(u+ − u′+) δ(u1 − u′1) δ(u2 − u′2) δ(ωu+u
2 − ωu′+u′2)

=2 δ(u+ − u′+) δ(u1 − u′1) δ(u2 − u′2)ω(u+)2 δ(ω(u+)2(u− − u′−))

=2 δ(u+ − u′+) δ(u1 − u′1) δ(u2 − u′2) δ(u− − u′−)

=δ4(u− u′) , (4.132)

which is the completeness relation.

86



We conclude that the MHSYM theory supports a description of infinite-spin particles.

On shell, a classical solution corresponding to a non-vanishing value of the quartic Casimir

W 2 = a2 + b2 can be chosen as e.g.

ha(x, u) = εafabnl(k, u)eikx (4.133)

where we have emphasized that the polarization functions have an implicit dependence

on the momentum ka.

Off-shell, the value of W 2 is not constrained in the present form of the MHS theory,

instead, it seems that the theory can support a continuous range of parameters µ2. Ad-

ditionally, the basis functions (4.118) could point to a degeneracy in that different values

of indices n, l in the choice (4.118) lead to the same eigenvalue of µ2. Alternatively, they

might correspond to some additional quantum numbers which are left to be uncovered.

We leave as an open issue how to extend the definition of basis functions to general

momenta and the possibility of constraining the theory to a single choice of µ2.
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Chapter 5

MHS gauge field models and

conservation laws

5.1 Model building in the MHS gauge sector

Having developed the MHS formalism and having it cast into a more general form, we

turn back to the question of constructing candidates for the theories based on the MHS

symmetry. We use the covariant formulation introduced in chapter 2 and show that apart

from the pure Yang Mills case, which will in the general formulation display different

phases, we can include additional terms in the action which can provide new interactions,

kinetic terms and solutions. We examine the conservation laws and identify an infinite

tower of conserved charges. Finally, we display a connection of the MHSYM theory to

matrix models.

5.1.1 General considerations

In the MHS gauge sector we take the degrees of freedom to be described by the MHS

vielbein ea(x, u), which is an MHS tensor (transforms in the adjoint representation). The

matter sector can be spanned by a set of matter fields collectively denoted by ψ which can

be in different representations of the MHS symmetry (discussed in more detail in section

2). Correspondingly, the action is a sum of two parts,

S[e, ψ] = Shs[e] + Sm[ψ, e] (5.1)
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one describing the pure MHS gauge theory, and the other the matter sector and its

coupling to the MHS vielbein. We assume that the action is weakly non-local in the

master space, by which we mean that both parts in (5.1) can be written in terms of a

master space Lagrangian

Shs,m =

∫
ddx dduLhs,m(x, u) . (5.2)

We will consider here the simplest possibilities, which are (Moyal) polynomials manifestly

covariant under the MHS symmetry. This means that Lhs(x, u) is an MHS tensor, while

Lm(x, u) may be an MHS scalar or an MHS tensor, depending on the matter content. In

both cases the MHS invariance of the action

δεS[e] = 0 (5.3)

is manifestly guaranteed. In case of a master space Lagrangian being an MHS tensor,

invariance of the action is a consequence of the trace property of the Moyal product

(A.17).1 In addition, we assume that the Lagrangian is a Lorentz scalar.

From (5.1) it follows that the EoM in the MHS gauge sector are

0 = Fahs(x, u) + J a
m(x, u) (5.4)

where

Fahs(x, u) =
δShs[e]

δea(x, u)
, J a

m(x, u) =
δSm[ψ, e]

δea(x, u)
(5.5)

To obtain the EoM, the trace property of the Moyal product can be used, since variations

of the fields must vanish at the boundary. This makes it equal whether the functional

derivative is "left" or "right", as emphasized in (2.56).

The EoM in the matter sector are given by

0 =
δSm[ψ, e]

δψ
. (5.6)

Using (2.80), (2.48) and (A.17) the MHS variation of Shs can be written as2

δεShs[e] =

∫
ddx dduFahs(x, u) δεea(x, u)

=

∫
ddx dduFahs(x, u)D?aε(x, u)

=−
∫
ddx dduD?aFahs(x, u) ε(x, u) . (5.7)

1Assuming proper gauge transformations for which boundary terms vanish.
2It is assumed here that the MHS variation is a proper gauge transformation, in which case boundary

terms in (2.48) and (A.17) vanish.
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Then, from (5.3) we get the off-shell identity

D?aFahs(x, u) = 0 . (5.8)

Applying D?a on EoM (5.4) and using (5.8) we get

D?aJ a
m(x, u) = 0 (5.9)

which states that the matter master current is (on-shell) covariantly conserved.

5.1.2 MHSYM theory

Let us first analyze the MHS gauge sector. The matter sector is studied in chapter 6.

The simplest acceptable Lagrangian term that is dynamical and has the flat vacuum

ea(x, u) = ua as a solution of the EoM it generates is

Lhs(x, u) =
1

4g2
ym

Tab(x, u) ? T ba(x, u) ≡ Lym(x, u) . (5.10)

This is the Lagrangian of the MHSYM theory already introduced in chapter 2. The

corresponding action is

Sym[e] =
1

4g2
ym

∫
ddx dduTab(x, u) ? T ba(x, u)

=
1

4g2
ym

∫
ddx ddu [ea ?, eb] ? [eb ?, ea] . (5.11)

Under a generic variation δea(x, u) that vanishes on the boundary of the integration

volume, the MHSYM action transforms as

δSym[e] =
1

2g2
ym

∫
ddx ddu {D?bT ba(x, u) ?, δea(x, u)}

=
1

g2
ym

∫
ddx dduD?bT ba(x, u) δea(x, u) (5.12)

which means that its contribution to the EoM is

Faym(x, u) =
1

g2
ym

D?b T ba(x, u)

=
1

g2
ym

[
eb(x, u) ?, [ea(x, u) ?, eb(x, u)]

]
. (5.13)

The EoM of the pure MHSYM theory are then

D?b T ba(x, u) = 0 . (5.14)
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It is important to observe that the MHSYM theory is classically a scale-free theory from

the master space perspective. If one takes the MHS vielbein to be dimensionless, then

the pure MHSYM coupling constant gym is also dimensionless. Moreover, as the coupling

constant can be absorbed by rescaling the MHS vielbein, it is a theory without an intrinsic

coupling constant. In chapter 2 we have seen that in the YM formulation the theory was

not scale-free. From the general perspective we can now understand that the scale was

introduced by a choice of the empty flat vacuum. In this normalization, it is given by

ea(x, u)vac = `hua . (5.15)

Note that the scale `h can be changed by "canonical" scale transformations

e′a(x, u) = ea(λx, u/λ) (5.16)

which form a subgroup of MHS transformations. The Minkowski vacuum spontaneously

breaks a part of the MHS symmetry.

In the perspective where the MHS vielbein is the fundamental variable we can observe

nonequivalent possibilities for vacua in the MHSYM theory. They are solutions of the

EoM which satisfy the condition3

Tab(x, u) = 0 (5.17)

We have already mentioned that the flat configuration ea(x, u) = ua is, at least from the

classical viewpoint, a well-defined Lorentz-invariant vacuum. However, it is not the case

that all configurations satisfying (5.17) are MHS gauge equivalent to the flat vacuum. An

obvious example is an "empty" configuration ea(x, u) = 0 which is a fixed point of MHS

gauge transformations. To obtain some insight into the structure of vacua, let us examine

the vacua that are of the form

ea(x, u) = Ma
µuµ (5.18)

where M are arbitrary constant real d× d matrices. MHS transformations preserving the

shape of these configurations have the gauge parameter master field of the form

EΛ(x, u) = xµΛµ
νuν (5.19)

where Λ is again an arbitrary constant real d× d matrix. We see that

[EΛ(x, u) ?, uµ] = iΛµ
νuν (5.20)

3In section 5.2 we show that all conserved charges, including the energy-momentum tensor, vanish for

configurations satisfying (5.17).
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from which it follows that under large gauge transformations the MHS vacuum solution

ea(x, u) = ua becomes

eΛ
a (x, u) ≡e−iEΛ(x,u)

? ? ua ? e
iEΛ(x,u)
?

=
∞∑
n=0

(−i)n

n!
[EΛ(x, u) ?, [EΛ(x, u) ?, . . . [EΛ(x, u) ?, ua]] . . .]

=δµa (eΛ)µ
νuν (5.21)

IfM cannot be written as an exponential of some matrix, the corresponding configuration

(5.18) is not MHS gauge equivalent to the vacuum (5.15).

Using (5.21) it is easy to show that a large MHS transformation of a vacuum solution

(5.18), with a parameter in the form 5.19, produces the same type of vacuum with matrix

MΛ given by

MΛ = MeΛ , (5.22)

where matrix multiplication is assumed. A corollary is that two vacua of the type (5.18),

which are defined with matrices of different rank, are MHS gauge inequivalent.

This analysis sugests that the MHSYM theory contains different phases. The flat

vacuum ea(x, u) = ua describes an empty flat (Minkowski) background and defines a

geometric phase in the sense of interpretations offered in chapter 2 and 7. When expanded

around the flat vacuum solution as in (2.70) the linear part of the EoM is second-order

in spacetime derivatives, and in this phase the theory has a perturbative regime (in the

coupling constant). In contrast, the configuration ea(x, u) = 0 does not have an emergent

regular geometric description and defines a non-perturbative strongly-coupled unbroken

phase (it is the only vacuum with a trivial orbit with respect to the MHS transformations).

5.1.3 Beyond MHSYM theory

We will analyze possible generalizations of the MHSYM theory, formed by additional

terms we can add to the pure MHSYM action. There is just one lower-dimensional term

allowed by the MHS symmetry for a generic number of spacetime dimensions d,

L1(x, u) = −λ1

2
g(x, u) = −λ1

2
ea(x, u) ? ea(x, u) (5.23)

which produces the following EoM contribution

Fa1 (x, u) = −λ1 e
a(x, u) . (5.24)
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This term is not dynamical and has the appearance of a mass term, but in the geometric

phase it behaves as a generalized cosmological constant term (see also the discussion and

analysis in section 7.3.2). When added to the MHSYM action, the flat configuration

ea(x, u) = δµauµ is no longer solution of EoM, so this term changes the vacuum in the

geometric phase.

For general d there is one additional independent term, which is of the same dimension

as Tab(x, u) ? T ab(x, u),

L2(x, u) =
λ2

4
g(x, u) ? g(x, u) (5.25)

where g(x, u) = ea(x, u)?ea(x, u) was defined in section 2.3.4, which would contribute the

following EoM term

Fa2 (x, u) =
λ2

2
{g(x, u) ?, ea(x, u)} . (5.26)

Similar to the generalized cosmological constant term, the effect of this addition removes

the flat configuration ea(x, u) = ua from the solution space. However, this term is also

dynamical and so it is interesting to see how it contributes to the linearized EoM in the

geometric phase. If we write

ea(x, u) = e(0)
a (x, u) + ha(x, u) (5.27)

where e(0)
a (x, u) is the solution of the EoM (a background), it is straightforward to show

Fa2 (x, u) =
λ2

2

(
{g(0)(x, u) ?, ha(x, u)}+

{
{e(0)

b (x, u) ?, hb(x, u)} ?, ea(0)(x, u)
}

+O(h2)
)
.

In case of the simplest type of background belonging to the geometric phase,

e(0)
a (x, u) = e(0)µ

a (x)uµ

the contribution to the linearized EoM is at most second-order in spacetime derivatives.

If the background is not of this type, it must have an infinite Taylor expansion in u and

as a consequence its contribution to the linearized EoM have an infinite number of terms

with no bounds on order in spacetime derivatives.

Similarly, we can construct potential Lagrangian terms by taking higher polynomials

in the MHS vielbein, all of them having a higher dimension in the geometric phase in d > 4

than the terms already discussed. There are two interesting terms of a topological origin.

If the number of spacetime dimensions is even, d = 2r, there exists a Lorentz-scalar MHS

tensor

Pr(x, u) = εa1b1...arbr Ta1b1(x, u) ? · · · ? Tarbr(x, u)
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where εa1...ad is the Levi-Civita symbol. As it is a generalization of the Chern term we

refer to it as the MHS Chern tensor. It can be used to construct Lagrangian terms, the

simplest being

LP (x, u) = λP Pr(x, u) . (5.28)

Note that this term is parity-odd. In d = 4 it has the same dimension as the MHSYM

term. It is not hard to show that it is a topological term,

Pr(x, u) = D?
a1

(
εa1b1...arbr eb1(x, u) ? Ta2b2(x, u) ? · · · ? Tarbr(x, u)

)
(5.29)

where we used (2.81) and (2.87). As a consequence it does not contribute to the (bulk)

EoM, but may possibly lead to non-perturbative effects if the theory contains topologically

non-trivial configurations analogous to instantons.

If the number of spacetime dimensions is odd, d = 2r + 1, we can construct the

following Lagrangian term

LCS(x, u) = εab1c1...brcr {ea(x, u) ?, Tb1c1(x, u) ? · · · ? Tbrcr(x, u)} . (5.30)

This tensor is parity-odd as well. From (5.29) it follows that it can be obtained as a

boundary term from the MHS Chern term. It is thus natural to call it the MHS Chern-

Simons tensor. It produces the following contribution to the EoM

FaCS(x, u) = d εab1c1...brcr Tb1c1(x, u) ? · · · ? Tbncn(x, u) (5.31)

which we call the MHS Cotton tensor. In d = 3 the MHS Chern-Simons term has a lower

dimension than the MHSYM term so it dominates in the IR regime. The EoM of the

pure MHS Chern-Simons theory in d = 3 is

εabcTbc(x, u) = 0 ⇒ Tbc(x, u) = 0, (5.32)

which shows that the MHSCS theory is topological.

5.2 Conservation laws and conserved charges in MH-

SYM theory

5.2.1 Covariant vs. non-covariant conservation laws

Here we would like to examine in more detail the question of conservation laws and

conserved charges in MHS theories, taking MHSYM theory as an example. As is well-
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known, in a Lorentz covariant theory a current satisfying the continuity equation on-shell

(i.e., with EoM applied)4

∂µJ
µ(x)

.
= 0 (5.33)

encodes a local conservation of charge defined by

QV (t) =

∫
V

dd−1x J0(x) . (5.34)

We refer to (5.33) as the conservation law. There are situations, especially when local

symmetries are present, in which the total charge identically vanishes for all physical

configurations. In the case of local symmetries such trivial charges are connected to

the proper gauge transformations. Gauge transformations usually contain a subgroup of

improper gauge transformations that are connected to non-trivial conserved charges. As

the conserved charges in gauge theories can be written as asymptotic integrals, improper

gauge symmetries are recognized by their "soft" fall-off in the limit r →∞. Here we are

interested in extracting conservation laws and non-trivial charges in the framework of the

MHS symmetry.

In theories with local symmetries covariant conservation laws appear naturally. In the

case of MHS symmetry they are defined in the master space and are of the form

D?aJ a(x, u)
.
= 0 (5.35)

where D?a is the MHS covariant derivative and J a(x, u) is an MHS (tensor) current. An

example is the matter current Jm(x, u), defined in (5.5), which is the source in the MHS

vielbein EoM. In ordinary theories with non-commutative local symmetries, such as YM

theory and GR, a covariant conservation law does not directly imply conserved charges.

For instance, the matter energy-momentum tensor in GR is covariantly conserved, but

this does not imply conservation of the matter energy and momentum. It is possible

to construct a corresponding energy-momentum pseudo-tensor which is conserved in the

sense of (5.33), but which also contains a contribution from the spin-2 sector. In the

case of the MHS symmetry, the covariant conservation (5.35) automatically generates the

conservation law (5.33). This is because the MHS covariant derivative is by the definition

a Moyal commutator and every Moyal commutator is a total divergence in the master
4For equalities valid on-shell we use the symbol " .=". The equalities valid for generic field configurations

satisfying proper boundary conditions are denoted by the simple equality sign "=".
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space

0
.
= D?aJ a(x, u) = ∂xµA

µ
J (x, u) + ∂µuB

J
µ (x, u) . (5.36)

Integrating both sides of (5.36) over the auxiliary space and assuming that boundary

terms in the auxiliary space are zero, we conclude that

Jµ(x) ≡
∫
dduAµJ (x, u) (5.37)

is conserved. While covariantly conserved master field currents can usually be written

in closed and compact expressions, we see from (5.36) and the structure of the Moyal

product that physically conserved spacetime currents Jµ(x) may have a rather involved

and cumbersome form when written explicitly.

An explicit example of a conserved charge for matter fields in the MHS theory that can

be obtained in this way is the one generated by a constant improper MHS transformation

ε(x, u) = ε = const, which corresponds to the U(1) subgroup of the MHS symmetry. The

MHS vielbein is neutral (invariant) under its action and so does not contribute to the

U(1) charge. It is the only conserved charge with such properties that is generated by the

MHS symmetry. We now pass to a detailed study of conservation laws in the case of the

MHSYM theory.

5.2.2 Conserved currents from EoM

In the geometric phase, conserved charges are directly obtained from the EoM following

the standard procedure used in ordinary YM theory and GR. Let us demonstrate this in

the case of MHSYM theory coupled to matter whose EoM is

1

g2
ym

D?bF ba(x, u) = J a
m(x, u) . (5.38)

We now use (2.70) and move all nonlinear terms in ha(x, u) to the right hand side, ob-

taining
1

g2
ym

∂xb F
ba
(1)(x, u) = J̃ a(x, u) (5.39)

where

F ab
(1)(x, u) = ∂xahb(x, u)− ∂xb ha(x, u) (5.40)
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and

J̃ a(x, u) =J a
m(x, u)− i

g2
ym

(
2[hb ?, ∂xb h

a]− [hb ?, ∂
a
xh

b] + [∂xb h
b ?, ha]

)
−

− 1

g2
ym

[
hb ?, [ha ?, hb]

]
. (5.41)

Taking a = 0 in (5.39) we get

J̃ 0(x, u)
.
=

1

g2
ym

∂xj F
j0
(1)(x, u) (5.42)

which is the MHS Gauss’s law, while taking the spacetime divergence of Eq. (5.39) yields

the continuity equation

∂xa J̃ a(x, u)
.
= 0 (5.43)

showing that the current J̃ (x, u) is conserved in the master space (before integrating

over auxiliary space). From Gauss’s law (5.42) it follows that the corresponding locally

conserved charge can be written as a surface space integral

Q̃V (t, u) =

∫
V

dd−1x J̃ 0(x, u) (5.44)

.
=

∫
V

dd−1x ∂xj F
j0
(1)(x, u)

.
=

∮
S(V )

dd−2aj F
j0
(1)(x, u) (5.45)

which is Gauss’s law in the integral form. Equation (5.43) encodes a tower of conserved

charges. To see this, we Taylor expand both sides in auxiliary coordinates around u = 0

to obtain an infinite set of conserved charges

Q̃µ1···µn .
=

∮
dd−2aj F

j0µ1···µn
(1) (x) (5.46)

where

F j0
(1)(x, u) =

∞∑
n=0

F j0µ1···µn
(1) (x)uµ1 · · ·uµn . (5.47)

5.2.3 Conservation laws from the Noether method

Let us now construct conservation laws by applying the Noether method. For simplicity,

we restrict ourselves to the pure MHSYM theory. First, using the MHSYM EoM

D?aT ab(x, u) = 0 (5.48)
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we conclude that a generic on-shell variation of the MHSYM master Lagrangian can be

written as

δLym(x, u)
.
= − 1

2g2
ym

D?a{T ab(x, u) ?, δeb(x, u)} . (5.49)

On the other hand, under an MHS variation

δεea(x, u) = D?aε(x, u) (5.50)

the Lagrangian transforms as an MHS tensor,

δεLym(x, u) = i[Lym(x, u) ?, ε(x, u)] . (5.51)

We now use (5.49) and (5.51) to write

0
.
=

1

2g2
ym

(
D?a
{
T ab(x, u) ?, D?bε(x, u)

}
− i

2

[
Tab(x, u) ? T ab(x, u) ?, ε(x, u)

])
. (5.52)

As both terms on the right hand side are Moyal commutators the equation has the form

0
.
= ∂xµA

µ
ε (x, u) + ∂µuB

ε
µ(x, u) . (5.53)

Again, integrating over the auxiliary space and assuming that all boundary terms vanish,

we obtain a standard conservation law (in the form of the continuity equation)

∂xµJ
µ
ε (x)

.
= 0 , Jµε (x) ≡

∫
dduAµε (x, u) . (5.54)

The corresponding conserved charges

Qε =

∫
dd−1x J0

ε (x) (5.55)

are non-trivial only for a small class of MHS parameters corresponding to improper gauge

transformations. It is expected that rigid variations ε(x, u) = ε(u), which we can expand

as

ε(u) =
∞∑
n=0

ξµ1···µnuµ1 . . . uµn (5.56)

with ξµ1···µn constant and completely symmetric, fall into this class. 5 We have already

analyzed the n = 0 case, which does not affect MHS vielbein and so (5.52) becomes trivial

(0 .
= 0). Let us now consider n ≥ 1 cases, by first constructing covariantly conserved
5The transformations (5.56) are surely not a complete set of improper MHS transformations. As

we know from Maxwell’s theory and GR, constant transformations are not the only ones generating

non-trivial charges. A complete analysis of asymptotic symmetries is left for future work.
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currents. For this we first have to find the covariantized form of the rigid MHS variation

(5.56). Motivated by Jackiw’s covariantization trick [79] we see that the simplest way to

do this is by replacing ua → ea(x, u)

ε(x, u) =
∞∑
n=0

ξa1···anea1(x, u) ? . . . ? ean(x, u) (5.57)

where ξa1···an is a constant tensor with symmetries guaranteeing reality of the MHS pa-

rameter ε(x, u).6 Now we use this in (5.52) where we want to write the second term on

the right hand side as a covariant divergence (the first term is already in this form). We

do this by using the identity

[A1 ? . . . ? An ?, X] =
n∑
j=1

[Aj ?, Aj+1 ? . . . ? An ? X ? A1 ? . . . ? Aj−1] (5.58)

valid for generic master space functions Aj(x, u) and X(x, u), to write

i
[
ea1 ? . . . ? ean

?, Tab ? T
ab
]

=
n∑
j=1

D?aj
(
eaj+1

? . . . ? ean ? Tab ? T
ab ? ea1 ? . . . ? eaj−1

)
. (5.59)

Using this in (5.52) we obtain

D?aT a
ξ (x, u)

.
= 0 (5.60)

with the covariantly conserved currents given by

T a
ξ = ξb1···bn

(
{T ac ?, D?c (eb1 ? . . . ? ebn)}+

+
1

2

n∑
j=1

δabjebj+1
? . . . ? ebn ? Tcd ? T

cd ? eb1 ? . . . ? ebj−1

)
. (5.61)

The currents related to totally symmetric ξb1···bn

T a
b1···bn = {T ac ?, D?c

(
e(b1 ? . . . ? ebn)

)
}+

+
1

2

n∑
j=1

δa(bjebj+1
? . . . ? ebn ? T|cd| ? T

cd ? eb1 ? . . . ? ebj−1) (5.62)

play a special role as they are obtained by covariantizing the rigid MHS symmetries.

Another reason for its special status is that they have the softest behavior at spatial
6For ε(x, u) in (5.57) to be real it has to be expressible purely in terms of Moyal commutators and/or

anticommutators. If the number of anticommutators is odd, the parameter ξa1···an is imaginary. When

ξa1···an is completely symmetric the expression (5.57) is a covariantization of (5.56).
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infinity (r →∞) in the geometric phase, which means that they are main candidates for

producing non-trivial charges. Since the corresponding conserved charges are described

by totally symmetric tensors, they should be related to the charges (5.46) obtained by

the previous method.

The n = 1 case in (5.56) corresponds to spacetime translations, leading to energy-

momentum conservation, and is therefore of special importance. Fixing n = 1 in (5.62)

we get the covariant master energy-momentum tensor

T a
b (x, u) = {T ac ?, Tbc} −

1

2
ηab Tcd ? T

cd (5.63)

which is symmetric, and in d = 4 traceless. As expected, the obtained expression has the

same form as in non-commutative field theories [80, 81, 82, 83].

5.3 MHSYM as a matrix theory

There is another way to represent MHS theories discussed above, which uses the connec-

tion between the Moyal product and the Weyl-ordered operator product well known from

the phase space formulation of a quantized particle. If we define the Hilbert space H with

the complete set of operators x̂µ, ûµ satisfying commutation relations

[x̂µ, ûν ] = iδµν , [x̂µ, x̂ν ] = 0 = [ûµ, ûν ] (5.64)

there is a bijective map for a fixed ordering scheme (details in appendix A.2) between the

set of linear operators on H and the set of functions on the master space, i.e.7

End(H) 3 Ô ←→ O(x, u) ∈ C∞(M×U) . (5.65)

If one defines a product of two operators with the (symmetric) Weyl ordering of x and u,

its pull-back to the master space (through the map (5.65)) defines the Moyal product of

corresponding master space functions (symbols)

Ô1 Ô2 ←→ O1(x, u) ? O2(x, u) . (5.66)

This map is such that the trace of an operator is given by the integral of the corresponding

function over the master space

tr(Ô) =

∫
ddx

ddu

(2π)d
O(x, u) . (5.67)

7One usually refers to O(x, u) as the symbol of operator Ô.
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Using this map it is now evident that all models for MHS theories can be written in this

operator language, and therefore as a type of matrix models.8 For example, the MHSYM

theory can be written as

Sym = −(2π)d

4gym

tr
(
[êa , êb][ê

a, êb]
)

(5.68)

where êa are operators on H, components of a vector in the fundamental representation

of SO(1, d− 1). The MHS symmetry is now represented by unitary linear operators

ÛE = exp(−iÊ) (5.69)

which act on the MHS vielbein operator as

êa → ÛE êa Û
†
E (5.70)

with all operator products defined with symmetric Weyl ordering.

8For an explicit proof that the Moyal product is a matrix product see [84].
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Chapter 6

Coupling to matter and scattering

Within the MHS framework we can also seek to describe matter fields. Our original

approach for gauging higher-spin symmetries described in section 2.1.2, started by an

appropriate reformulation of the spacetime action for a massive scalar field in the master

space language. It is surely then a valid approach to use such a formulation for matter,

which we will call minimal matter. However, this is not the only possibility.

As we have seen in chapter 2, master space fields can transform in the adjoint or the

fundamental representation of the MHS symmetry. For that reason, we can formulate

models for matter as master fields transforming in the adjoint or fundamental represen-

tation, along with coupling them to the MHS field.

We will take the first steps in calculating scattering between matter fields mediated

by the MHS field and find the results which depend on the type of matter.

6.1 Minimal matter

The first description of matter we wish to consider are known matter actions rewritten

in the Moyal product language. As described in chapter 2, where (2.20) described a

massive complex scalar field, we can see that using the master space formalism we can

write minimally coupled matter actions in the form

Sm[φ, e] =

∫
ddx dduTr

(
Wφ(x, u) ? K(e(x, u))

)
(6.1)

where the trace is performed over Lorentz and internal indices carried by matter fields

and the Wigner function can be written as

(Wφ(x, u))rs = φr(x) ? δd(u) ? φs(x)∗ , (6.2)
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with r, s standing for possible tensor/spinor or other internal indices. By construction,

both the Wigner function and K(e(x, u)) are MHS tensors. It then follows that La-

grangians for minimally coupled matter, defined by (6.1), are also MHS tensors. Note

that coupling to matter in this way explicitly breaks the translational symmetry in the

auxiliary space (most easily noticed by the presence of δ(d)(u) in the Wigner function).

The matter action is also formally defined for non-geometric configurations.

To understand the nature of the minimal coupling in MHS theory in the geometric

phase, we first use (2.70) to separate free and interacting parts of the action by writing

K(e(x, u)) = K(u) +Kint(h(x, u);u) (6.3)

where the explicit dependence of Kint on u is present only for bosonic fields. Coupling

to the MHS potential is linear for fermionic matter and quadratic for bosonic matter.

Substituting this into (6.1) we get

Sm[φ, h] = S(0)
m [φ] + S(int)

m [φ, h] (6.4)

where by definition S
(0)
m is the action for the free field and the interaction term can be

written as

S(int)
m [φ, h] =

∫
ddx ddu

(
φ∗r(x) ? Krs

int(x, u) ? φs(x)
)
δd(u) . (6.5)

Let us demonstrate the above construction on two important examples of matter;

Dirac and Klein-Gordon fields. In case of a complex Klein-Gordon field we have already

seen in (2.27) that in the geometric phase where ea(x, u) = ua + ha(x, u)

K
(
e(x, u)

)
= ea(x, u) ? ea(x, u)−m2 = u2−m2 + 2uaha(x, u) + ha(x, u) ? ha(x, u) (6.6)

Then, following (6.3), we see that the interacting part is given by

Kint(x, u) =h(x, u) = 2uaha(x, u) + ha(x, u) ? ha(x, u) (6.7)

where h(x, u) is a composite object obtained from the MHS potential, already introduced

in (2.97). If we now use a Taylor expansion in the auxiliary coordinates,

h(x, u) =
∞∑
s=0

hµ1···µs
(s) (x)uµ1 · · ·uµs (6.8)

we can find that the interacting part of the action is given by

S(int)
m [ϕ, h] =

∞∑
s=0

∫
ddx J (s)

µ1···µs(x)hµ1···µs
(s) (x) . (6.9)
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where the spin-s currents are of the form

J (s)
µ1···µs(x) =

is

2s

s∑
k=0

(
s

k

)
(−1)k

(
∂xµ
)k
ϕ(x)

(
∂xµ
)s−k

ϕ∗(x) (6.10)

=
is

2s
ϕ(x)∗

↔
∂µ1 · · ·

↔
∂µsϕ(x) . (6.11)

Details of this calculation can be found in appendix B.2. For concreteness, we report on

the first few currents

J (0)(x) = ϕ∗(x)ϕ(x) (6.12)

J (1)
µ (x) =

i

2
(∂µϕ(x)∗ϕ(x)− ϕ(x)∗∂µϕ(x)) (6.13)

J (2)
µ1µ2

(x) =
−1

4
(ϕ(x)∂µ1∂µ2ϕ(x)∗ − 2∂(µ1ϕ(x)∂µ2)ϕ(x)∗ + ∂µ1∂µ2ϕ(x)ϕ(x)∗) (6.14)

...

This is the approach originally followed in [44, 43], where the linear coupling between a

tower of higher-spin fields hµ1···µs
(s) (x) and the simple currents (6.10) was the starting point.

The authors mention in [43] that their HS fields could be composite, and here through

(6.7) we see that explicitly while arriving at the same simple currents through a Taylor

expansion of the composite field h(x, u).

In case of the Dirac field ψ(x) we have

Kint(x, u) = −γ0γaha(x, u) . (6.15)

Taylor expanding the MHS potential ha(x, u) as in (2.70) and following the same steps

for explicitly writing down the interaction part of the action one gets

S(int)
m [ψ, h] =

∞∑
n=0

∫
ddx Ja(n)µ1···µn(x)h(n)µ1···µn

a (x) (6.16)

where the HS currents ([3, 67]) are given by

Ja(n)µ1···µn(x) =
in

2n
ψ̄(x)γa

↔
∂µ1 · · ·

↔
∂µnψ(x) . (6.17)

6.2 Master field matter

Another way to couple matter in an MHS symmetric way is to describe it by master fields,

φ(x, u). This type of matter is necessary if one wants to introduce supersymmetry in the

approach of [85]. The simplest representations are adjoint and fundamental.
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6.2.1 Adjoint representation

Matter in the adjoint representation is described by MHS tensors, which means that the

MHS covariant derivative is given by

D?aφ(x, u) = i[ea(x, u) ?, φ(x, u)] . (6.18)

In case of minimal coupling the action is then constructed in the standard way, by substi-

tuting ∂xa → D?a. This type of matter shares some properties with the MHS gauge sector

action: the master fields are real, actions are also defined in the non-geometric phases,

and they can be written in the form of matrix models.

Let us apply this to the free Majorana spin-1/2 field ψ(x, u). The MHS action for

minimal coupling is

SM [ψ, e] =
1

2

∫
ddx ddu ψ̄(x, u) ? (iγaD?a −M)ψ(x, u) . (6.19)

In the operator formulation this is

SM [ψ, e] = −(2π)d

2
tr
(

¯̂
ψ
(
γa[êa, ψ̂] +Mψ̂

))
. (6.20)

In case of a real scalar field the minimal coupling is described by the following action

Ss[ϕ, h] =

∫
ddx ddu

[
ηab(D?

aϕ)∗ ? D?
bϕ−m2ϕ∗ ? ϕ− V?(ϕ∗ ? ϕ)

]
. (6.21)

6.2.2 Fundamental representation

Matter in the fundamental representation of MHS symmetry transforms as

φE(x, u) = e−iE(x,u)
? ? φ(x, u) (6.22)

from which it follows

φE(x, u)∗ = φ(x, u)∗ ? eiE(x,u)
? (6.23)

In the YM-like formalism the MHS covariant derivative in the fundamental representation

is

D?
aφ = ∂xaφ+ i ha ? φ . (6.24)

It is simple to check the MHS covariance

(D?
aφ)E = e−iE? ? D?

aφ . (6.25)
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MHS invariants are constructed by Moyal-sandwiching MHS tensors between φ∗ or

(D?
aφ)∗ from the left and φ or D?

aφ from the right. Using these invariants we can produce

candidates for Lagrangian terms, with minimal coupling defined in the usual manner by

a substitution of MHS covariant derivative for partial spacetime derivative in free field

actions.

However, minimal prescription based on (6.24) can be defined only in the geometric

phase. In addition, it is not natural from the the perspective of a matrix model formula-

tion. These shortfalls can be avoided by using the prescription

∂xaφ(x, u)→ i ea(x, u) ? φ(x, u) . (6.26)

From the relation

i ea(x, u) ? φ(x, u) = iuaφ(x, u) +
1

2
∂xaφ(x, u) + i h(x, u) ? φ(x, u) (6.27)

it is obvious that it differs from (6.24). To understand the origin of this degeneracy of

minimal prescriptions, let us consider an example of the master Dirac field ψ(x, u). In

this case it is easy to show that

− ψ̄γa ? ea ? ψ =
i

2
ψ̄γa ? D?

aψ −
i

2
D?
aψ ? γ

aψ + uaψ̄γ
a ? ψ . (6.28)

The first two terms on the right hand side produce the master Lagrangian kinetic term

which one would obtain by the minimal coupling prescription based on (6.24), leading to

the action

SD1[ψ, e] =

∫
ddx ddu ψ̄(x, u) ?

(
iγaD?

a −M
)
ψ(x, u) . (6.29)

On the left hand side of (6.28) is the expression which takes natural matrix model form

when used in the action

SD2[ψ̂, ê] = −Tr
(

ˆ̄ψ(γaêa +M)ψ̂
)

(6.30)

and is formally defined for all phases of the MHS theory (it also takes care of hermicity by

automatism). The two actions differ already at the free field level, i.e., for ha(x, u) = 0.

We now see that the difference between Lagrangians in two prescriptions is the third term

on the right hand side of (6.28) which is an MHS scalar. Its existence is a consequence

of the fact that Lagrangian terms for matter in the fundamental representation are MHS
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scalars, which means that they can be multiplied by functions of the auxiliary coordinates

without breaking any of the important symmetries.1

Let us mention that mater fields in the fundamental representation have an additional

peculiarity in that the rigid MHS variations with n = 1 (s = 2) act differently than in the

case of the MHS vielbein and previously discussed realizations of matter,

δε(1)
φ =− i εµuµ ? φ

=− i εµuµ φ−
εµ

2
∂xµφ . (6.31)

We see that it does not describe spacetime translations. One consequence is that the

MHS transformations in this case can be consistently truncated only to the lowest spin

sector (n = 0) when master fields are Taylor-expanded around u = 0.

6.3 Tree-level scattering

The most accessible results we can obtain as potential observables are the scattering

amplitudes in the lowest perturbation order. We will construct the Feynman rules for the

MHS sector and the matter sector. We have already seen that the MHSYM action in the

geometric phase, when linearized, becomes quite similar to the action of Maxwell’s theory

S(2)
ym =− 1

4g2
ym

∫
ddx dduF (2)ab(x, u)F

(2)
ab (x, u) . (6.32)

If we now pass to the dimensionless auxiliary coordinates, as introduced in (2.62)

ū = `hu , ḡym = `
d/2
h gym , h̄a = ha/ḡym (6.33)

and restrict our attention to d = 4 in which the coupling constant becomes dimensionless,

we can rewrite the linearized action as

S(2)
ym =

1

2

∫
d4x d4ū (∂ah̄b(x, ū)− ∂bh̄a(x, ū))(∂ah̄b(x, ū)− ∂bh̄a(x, ū)) . (6.34)

By using an orthonormal basis of functions in the auxiliary space {fr(ū)},∫
ddū fr(ū) fs(ū) = δrs (6.35)

1Of course we should be careful not to break symmetries which we would like to preserve, such as

Lorentz symmetry and translations in spacetime. The symmetry under translations in the auxiliary space

is broken by such multiplications, but we choose not to protect this symmetry.
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to expand master fields as

h̄a(x, ū) =
∑
r

h̄(r)
a (x) fr(ū) (6.36)

we can obtain a very simple expression for the linearized action

S(2)
ym =

1

2

∫
d4x d4ū

∑
r,s

fr(ū)fs(ū)(∂ah̄
(r)
b (x, ū)− ∂bh̄(r)

a (x, ū))(∂ah̄(s)b(x, ū)− ∂bh̄(s)a(x, ū))

=
1

2

∑
r,s

δrs

∫
d4x (∂ah̄

(r)
b (x, ū)− ∂bh̄(r)

a (x, ū))(∂ah̄(s)b(x, ū)− ∂bh̄(s)a(x, ū)) . (6.37)

Owing to the formal similarity to Maxwell’s action, we find a simple expression for the

propagator

Dr,s
ab (k) = iD

(QED)
ab δr,s (6.38)

where D(QED)
ab is the usual propagator in quantum electrodynamics. For tree-level dia-

grams, this is the only Feynman rule we need regarding the gauge sector.

6.3.1 Minimal matter

We take as an example a single Dirac field ψ(x) coupled to the MHS gauge field as in

(6.1). By using the integral representation of the Moyal product (A.13) the interaction

term becomes

SD,int[ψ, h̄] =− ḡym

∑
r

∫
ddx

∫
ddū ψ̄(x) ? γa

[
h̄(r)
a (x)fr(ū)

]
? ψ(x) δd(ū)

= −ḡym

∑
r

∫
ddx ddyddz

ddw

(2π)d
ddv

(2π)d
e
i y
`h
w̄−i z

`h
v̄
ψ̄(x+

y

2
)γahra(x)fr(v̄ + w̄)ψ(x+

z

2
) .

We now go to the momentum space with

ψ̄(x+
y

2
) =

∫
ddk

(2π)d
eik(x+ y

2
)Ψ̄(k) (6.39)

ψ(x+
z

2
) =

∫
ddk′

(2π)d
eik
′(x+ z

2
)Ψ(k′) (6.40)

h(r)
a (x) =

∫
ddq

(2π)d
eiqxH(r)

a (q) (6.41)

and we can rewrite the interaction term as

SD,int[ψ, h̄] =− ḡym

∑
r

∫
ddk

(2π)d
ddk′

(2π)d
ddq

(2π)d
δ(d)(k + k′ + q)Ψ̄(k)γaH(r)

a (q)fr(`h
k′ − k

2
)Ψ(k′)

(6.42)
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The easiest way to determine the Feynman rules for the vertices is to compare this ex-

pression to the interaction term in QED, rewritten in momentum space

SQED,int[ψ,A] =− e
∫
ddx ¯ψ(x)γaAa(x)ψ(x)

=− e
∫

ddk

(2π)d
ddk′

(2π)d
ddq

(2π)d
δ(d)(k + k′ + q)Ψ̄(k)γaAa(q)Ψ(k′)

We now recognize that the vertex of the minimal coupling of simple matter to the MHS

gauge field contains the same structure as in QED multiplied with a momentum dependent

function,

V a
r (k, k′) = iḡymγ

afr(`h
k′ − k

2
) . (6.43)

The basis functions (e.g. Hermite functions) vanish in the limit |ū| → ∞ faster than any

power, making the UV limit soft. The formula for the MHS vertex factor (6.43) suggests

that the UV behavior of the MHSYM should be better than in QED.

We wish to consider the simplest amplitude for an elastic scattering of fermions f1f2 →

f3f4, and for that purpose, there are two relevant Feynman rules, explicitly stated with

their non-trivial momentum dependence (straight lines are fermion lines, while the wiggly

lines correspond to the MHS field).

• Incoming particle with momentum p1, outgoing particle with momentum p2

= iḡymγ
afr(−`h

p1 + p2

2
) (6.44)

• Incoming antiparticle with momentum p1, outgoing antiparticle with momentum p2

= iḡymγ
afr(`h

p2 + p1

2
) (6.45)

The fermion propagator as well as external lines are the same as in QED.

The t-channel amplitude corresponds to the following diagram
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whose contribution is

iMt =
∑
r,s

u(p1)iḡymγ
afr(−`h

p1 + p3

2
)ū(p3)

−iηabδrs
(p1 − p3)2

u(p2)iḡymγ
bfs(−`h

p2 + p4

2
)

=iMQED
t

∑
r,s

δrsfr(−`h
p1 + p3

2
)fs(−`h

p2 + p4

2
)

=iMQED
t δ(d)(

`h
2

(p1 + p3 − p2 − p4) (6.46)

where MQED
t is of the form expected in electrodynamics and where we have employed

the Feynman gauge and used the completeness relation∑
r

fr(ū) fr(v̄) = δd(ū− v̄) . (6.47)

We can also use the momentum conservation condition

p1 + p2 = p3 + p4 (6.48)

to finally express

iMt = iMQED
t δ(d)(`h(p3 − p2)) . (6.49)

The u-channel consists of replacing 3 ↔ 4, which enables us to write down the full tree

level amplitude

iM =i(Mt −Mu) (6.50)

=i(MQED
t δ(d)(`h(p3 − p2))−MQED

u δ(d)(`h(p4 − p2))) (6.51)

It is vanishing unless the set of momenta in the final state is the same as the set of

momenta in the initial state. This result is expected from the viewpoint of the Coleman-

Mandula theorem, despite the fact that MHS theory does not fulfill all assumptions of

the theorem. The result is also interesting from the perspective of the search for the dark

matter candidates in cosmology.2

The presence of the Dirac delta functions in the amplitude is a feature shared by

recent approaches to constructing a higher spin theory in flat spacetime under the name of
2For recent speculations that higher-spin particles may describe dark matter see [86].
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chiral higher spin gravity. In particular, in [87] they have identified appropriate algebraic

structures for n-point amplitudes of higher spin fields in flat spacetime using the spinor-

helicity formalism. It was argued that higher spin amplitudes should be distributions of

momenta supported only on the vanishing values of the Mandelstam variables, and they

support this claim by identifying inside the amplitudes a delta function dependence on

the spinor-helicity variables related to field momentum. Similarly, they conclude that the

amplitudes are non-vanishing only for collinear momenta.

Focusing our attention on (6.47), we could envisage a way out of the appearance of

Dirac delta functions by an appropriate restriction of the possible MHS particles allowed in

the interaction. So far, we have identified a single consistent reduction of the configuration

space of the MHSYM theory and it comes from restricting to odd functions in the auxiliary

space ea(x,−u) = −ea(x, u) ("truncation to spin-even sector"). In this case the basis

functions fr(ū) are also odd, fr(−ū) = −fr(ū), and the completeness relation becomes∑
r

fr(ū) fr(v̄) =
1

2

(
δd(ū− v̄)− δd(ū+ v̄)

)
. (6.52)

The t-channel amplitude is now

Mt =
1

2
M(QED)

t

(
δd
(
`h(p1 − p′1)

)
− δd

(
`h(p1 + p2)

))
. (6.53)

The main conclusion, that the amplitude is ultralocal in momentum space, remains the

same.

6.3.2 Master space matter in the fundamental representation

We take that matter is represented by a single master Dirac field ψ(x, ū) in the funda-

mental representation of the MHS symmetry (see Sec. 6.2). The free action is simply

SD,0[ψ] =

∫
ddx ddū ψ̄(x, ū)γa∂xaψ(x, ū) (6.54)

while the interaction term is

SD,int[ψ, h̄] =− ḡym

∫
ddx ddū ψ̄(x, ū) ?

(
γah̄a(x, ū)

)
? ψ(x, ū)

=− ḡym

∫
ddx ddūTr

(
ψ(x, ū) ? ψ̄(x, ū)γa

)
h̄a(x, ū) (6.55)

where Tr denotes the trace over spinor indices. Now we also expand the master Dirac

field in the orthonormal basis in the auxiliary space

ψβ(x, ū) =
∑
j

ψ
(j)
β (x) fj(ū) (6.56)
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where β is a spinor index. The basis used for the matter field does not have to be the

same as the one used for the MHS potential.

The interaction terms can give us the Feynman rules for the vertex in the same way,

we evaluate the Moyal products and pass to the momentum space

SD,int[ψ, h̄] = −ḡym

∫
ddū

ddk

(2π)d
ddk′

(2π)d
ddq

(2π)d
(6.57)

×ψ̄(i)(k)γah̄(r)
a (q)ψ(j)(k′)f ∗i (ū− `h

k′

2
)fj(ū+ `h

k

2
)fr(ū) (6.58)

Again, we find a momentum-dependent vertex function

V a
ijr(k, k

′) = −ḡymγ
a

∫
ddu f ∗i (ū− `h

k′

2
)fj(ū+ `h

k

2
)fr(ū) (6.59)

Following the same steps as above, we can approach to calculate an amplitude for a

scattering of the form ff → ff . The momentum prescriptions would also follow (6.44)-

(6.45). For the t-channel diagram with momenta labeled as in (6.3.1), we obtain the

amplitude

Mt =M(QED)
t A

(ij)
t (6.60)

where

A
(ij)
t =

∑
r

V
(hs)
i1j1r

(p3, p1)V
(hs)
i2j2r

(p4, p2)

=

∫
ddū f ∗i1(ū+

`h
2
p1)fj1(ū+

`h
2
p3)

∫
ddv̄ f ∗i2(v̄ +

`h
2
p2)fj1(v̄ +

`h
2
p4)
∑
r

fr(ū)fr(v̄)

=

∫
ddū f ∗i1(ū+

`h
2
p1) fj1(ū+

`h
2
p4) f ∗i2(ū+

`h
2
p2) fj2(ū+

`h
2
p4) . (6.61)

In passing from second to third line the completeness relation was used. The u-channel

contribution to the amplitude is obtained from (6.60) and (6.61) by exchanging p′1 ↔ p′2

and i1 ↔ i2. The total tree-level amplitude is

Mtree =Mt −Mu . (6.62)

There are no Dirac-delta functions which are present in the case of simple spacetime

matter. The integral in (6.61) is convergent and, due to the asymptotic fall-off of functions

fj(ū) when |ū|→∞, the MHS contribution certainly makes the UV behavior softer when

compared to the standard spinor QED. The basis functions can be chosen in the form

fr(ū) = Pr(ū)e−(`hū)2

, (6.63)
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where Pr are polynomials. Using this in (6.61) we can conclude that 4-point amplitudes

will have the following form

A
(ij)
t = P (ij)(`hp) exp

(
− `

2
h

16

4∑
i,j=1

(pi − pj)2

)
, (6.64)

where P (ij) are polynomial functions including a normalization factor from the ū integra-

tion. The exponential factor makes the UV behavior much softer compared to QED.
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Chapter 7

Low spin sector and induced geometry

To gain more insight into the structures inside the MHS theory, we now focus on the

low spin sector; meaning the first two terms in a Taylor expansion of master fields in the

auxiliary space. This truncation is consistent at the level of equations of motion since the

MHS algebra is closed under variations with such truncated parameters;

[δε1 , δε2 ] = δi[ε2?,ε1] , (7.1)

and if ε1(x, u) = ε1(x) + εµ1(x)uµ and ε2(x, u) = ε2(x) + εµ2(x)uµ we find

i[ε2
?, ε1] = (εµ1∂µε2 − ε

µ
2∂µε1) + (εν1∂νε

µ
2 − εν2∂νε

µ
1)uµ . (7.2)

With an identification of geometric structures appearing in the low spin equations and

the MHS covariant derivative, we arrive at an induced geometric picture and display the

relation to teleparallel geometry. Finally, we find additional exact vacuum solutions to

the equations of motion which are of the form motivated by the Minkowski vacuum.

7.1 Emergent geometry in the MHS theory

We have seen in chapter 6 that the minimal way to incorporate interacting matter in-

side the MHS framework leads to the picture in which matter perceives spacetime fields

obtained by Taylor expanding the MHS vielbein in the auxiliary space

ea(x, u) =
∞∑
n=0

e(n)µ1...µn
a (x)uµ1 · · ·uµn (7.3)

as a HS background. From this viewpoint the lowest two components, e(1)
a (x) and e(1)µ

a (x),

play the roles of the U(1) potential and the emergent spacetime vielbein, respectively. In
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this section we focus on the low-spin sector n ≤ 1 (s ≤ 2), with the goal of finding out

what sort of spacetime geometry emerges from the MHS framework.

For this reason we write the expansion (7.3) in the form

ea(x, u) = Aa(x) + Ea
µ(x)uµ + . . . (7.4)

and similarly for the MHS variation parameter

ε(x, u) = ε(x) + εµ(x)uµ + . . . (7.5)

and in all expressions ignore higher spin components (with n > 1) denoted above by

ellipses. We noted in chapter 4 that the truncation to the low-spin sector is apparently

consistent at the level of MHS symmetry and EoM. However, we should keep in mind that

such truncated configurations are not physical (see section 4.1.1), so our findings based

on this truncation serve only as a small window to possible geometric underpinnings of

the MHS theory.

If B(x, u) and C(x, u) are generic master fields, their Moyal bracket truncated to the

low spin sector,

i[B(x, u) ?, C(x, u)] =
∂C(x, u)

∂xµ
∂B(x, u)

∂uµ
− ∂B(x, u)

∂xµ
∂C(x, u)

∂uµ
+ . . .

=− {B(x, u), C(x, u)}PB + . . . (7.6)

is given by the Poisson bracket, where the master space plays the role of the phase space.

From (7.6) it follows that the set of spin-2 truncated master fields is closed under the

Moyal bracket. The Taylor expansion of (7.6) is given by

i[B(x, u) ?, C(x, u)] =Bν
(1)(x) ∂νC(0)(x)− Cν

(1)(x) ∂νB(0)(x)

+
(
Bν

(1)(x) ∂νC
µ
(1)(x)− Cν

(1)(x) ∂νB
µ
(1)(x)

)
uµ + . . . (7.7)

=£B(1)
C(0) −£C(1)

B(0) +
(
£B(1)

C(1)

)µ
uµ + . . . (7.8)

The last line is obtained by recognizing the differential-geometric structure, with Lie

derivatives treating B(0)(x) and C(0)(x) as scalar fields and Aµ(1)(x) and Bµ
(1)(x) as vector

fields on the spacetime manifold. We will see below that this is generally true in our

construction – all expressions truncated to the low-spin sector (s ≤ 2) are going to be

diff-covariant.
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Let us apply this to the MHS variation of the MHS vielbein (2.71). Using (7.4), (7.5)

and (7.8) we obtain that the low-spin spacetime fields transform as

δεAa(x) =£Eaε(x) (7.9)

δεAa(x) =−£εAa(x) (7.10)

δεEa
µ(x) =0 (7.11)

δεEa
µ(x) =

(
£Eaε

)µ
(x) (7.12)

We now see that the MHS variation with n = 1 acts as an infinitesimal diffeomorphism

defined by

x′µ = xµ + εµ(x) (7.13)

under which Ea
µ(x) behaves as a set of vector fields, while Aa(x) behaves as a set of

scalars. Assuming that the frame Eaµ(x) is regular, i.e., there exists a co-frame Ea
µ(x)

satisfying

Ea
µ(x)Ea

ν(x) = δνµ , Eb
µ(x)Ea

µ(x) = δba (7.14)

an MHS variation with n = 0 acts on Aµ(x) = Ea
µ(x)Aa(x) as

δεAµ(x) = −∂µε(x) (7.15)

while the frame Eaµ(x) is invariant. Taken all together, Eaµ(x) can be identified as the

(inverse) vielbein, while Aa(x) can be identified as a U(1) gauge potential vector field in the

non-coordinate basis of the vielbein. The n = 0 MHS variations are infinitesimal U(1)

gauge transformations, while n = 1 MHS variations are infinitesimal diffeomorphisms.

Note that this interpretation is only valid in the geometric phase, in which the frame

Ea
µ(x) invertible, to which we now turn our attention.

A word of caution is necessary here. If we keep higher spin contributions, the diff-

covariant structure, at least as defined in the standard way, is apparently lost. This can

be traced to the mixing (or twisting) of the HS transformations. These effects can be seen

by analyzing n = 1 finite (large) MHS transformations of MHS tensors,

E(x, u) = Eµ(x)uµ (7.16)

where for the sake of simplicity we assume that the n = 0 component of the MHS tensor

is vanishing

Xa...(x, u) = X(1)µ
a... (x)uµ +O(u2) (7.17)
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From the definition of large MHS transformations

XEab···(x, u) = e−i E(x,u)
? ? Xab···(x, u) ? ei E(x,u)

? (7.18)

and the Baker-Campbell-Hausdorff formula it follows that the spacetime vector field

X
(1)µ
a... (x) transforms as (

X(1)E
a...

)µ
=
(

exp(£E)X
(1)
a...

)µ
+ . . . . (7.19)

This should be compared with the diff-transformation of a vector field

V ′µ(x′) = ∂νζ
µ(x)V ν(x) , x′µ = ζµ(x) (7.20)

The large MHS transformation (7.19) is a diffeomorphism, where the connection between

parameter fields seems to be given by

ζµ(x)− xµ =
∞∑
r=0

(E(x) · ∂)r

(r + 1)!
Eµ(x)

=
eE(x)·∂ − 1

E(x) · ∂
Eµ(x) . (7.21)

We have checked this relation up to the quartic order [88, 89]. We see that large MHS

transformations in the spin-2 sector are indeed finite diffeomorphisms, but that the natu-

rally defined parameters of the two descriptions are related in a complicated way given by

(7.21). Let us now analyze the metric, whose low-spin components in the MHS framework

are naturally obtained from (2.90). The result is

g(0)(x) =
1

2
Aa(x)Aa(x) +

1

2
∂νEa

µ(x) ∂µE
aν(x) + . . . (7.22)

gµ(1)(x) = Eaµ(x)Aa(x) + . . . (7.23)

gµν(2)(x) = Eaµ(x)Ea
ν(x) + . . . . (7.24)

Relations (7.23)-(7.24) confirm the identification of

Aµ(x) ≡ Eaµ(x)Aa(x) (7.25)

as a U(1) vector potential, Eaµ(x) as a vielbein and

gµν(x) ≡ Eaµ(x)Ea
ν(x) (7.26)

as the (inverse) metric tensor. The terms on the right hand side of (7.22) are responsible

for producing the seagull interaction terms when a Klein-Gordon matter field is minimally

coupled to the MHS field.
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To explore a possible induced geometric picture, we define a linear connection by

demanding compatibility between the linear part in the expansion of the MHS covariant

derivative (7.8) and the induced geometric covariant derivative

(D?aV )µ(1)(x) =
(
Ea

(1)ν∂νV
µ

(1) − V
ν

(1)∂νEa
(1)µ
)
≡ Ea

(1)ν∇νV
µ . (7.27)

from which it follows that the induced covariant derivative of a vector field should be

given by

(∇EaV )µ ≡ Ea
ν∇νV

µ =
(
£EaV

)µ
. (7.28)

Multiplying by Ea
µ(x) we finally obtain

∇νV
µ =Ea

ν

(
£EaV

)µ
=∂νV

µ + Ea
µ∂ρE

a
ν V

ρ . (7.29)

This means that the MHS symmetry induces the following linear connection

Γµρν = Ea
µ∂ρE

a
ν = −Ea

ν∂ρEa
µ . (7.30)

The obtained linear connection is very much different from the Levi-Civita connection.

For one, the torsion tensor is generally non-vanishing, as it can explicitly be checked that

T µρν =Γµνρ − Γµρν

=ξµρν ≡ Ea
ρE

b
νξ
µ
ab , (7.31)

where ξµab(x) is

ξµab =
(
£EaEb

)µ
= ξcabEc

µ . (7.32)

ξcab(x) are known as coefficients of anholonomy. As a consistency check, let us calculate

the n = 1 component of the HS torsion. It is easy to show that it is given by

T
(1)µ
ab (x) = ξµab(x) + . . . (7.33)

which is consistent with (7.31).

Also, the linear connection (7.30) is not metric compatible, the nonmetricity tensor

being

Qρ
µν ≡ ∇ρ gµν = T µρσ g

ρν + T νρσ g
ρµ = T µνσ + T νµσ (7.34)

which is generally non-vanishing. Note that the nonmetricity tensor is not independent

but is fully (algebraically) expressible in terms of torsion. The same is true for the
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Riemann tensor, given for a general linear connection as (see e.g. [60] or [90] for a general

exposition)

Rρ
µσν = ∂σΓρµν − ∂νΓρµσ + ΓρησΓηµν − ΓρηνΓ

η
µσ (7.35)

for which it can be shown that it can be expressed in terms of the torsion tensor and its

covariant derivatives

Rρ
θµν = ∇µT

ρ
θν −∇νT

ρ
θµ − T ραµTαθν + TαθµT

ρ
αν − TαµνT ρθα . (7.36)

Note that the usual algebraic symmetries of the Riemann tensor for a Riemannian con-

nection are not all present if torsion is non-vanishing [60]. Let us also calculate the spin

connection in the geometry induced by the MHS construction. The simplest way to find

it is to use

Aabµ = Ea
ν ∇µEb

ν . (7.37)

Using (7.30) we get

Aabµ = Ea
νEb

ρ T νµρ = T aµb . (7.38)

We see that Aabµ is not antisymmetric in its first two indices, which is a manifestation of

metric incompatibility. Again, we see that the induced spin connection is fully determined

by the torsion.

7.1.1 Connection to teleparallelism

We have seen that the induced spacetime geometry found in the s = 2 (n = 1) sector

of the MHS theory seems rather unusual. The linear connection is metric-incompatible,

and both the torsion and the Riemann tensor are non-vanishing. It is in fact closely

related to teleparallel geometry. The key observation is that there is only one independent

fundamental tensor, the torsion, and all others are expressible in terms of it.

Let us first briefly review the concept of distant parallelism or teleparallelism.1 Let us

assume that a differentiable manifold is equipped with a linear connection Γ+, which is

not symmetric. Teleparallelism is a requirement on the linear connection that there exists

a frame of vector fields (an inertial frame) Eaµ(x) that globally satisfies

∇+
µEa

σ ≡ ∂µEa
σ + Γσ+ρµEa

ρ = 0 . (7.39)

1For a detailed exposition of teleparallel geometry and gravity see the book [91].
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From the definition of the covariant derivative it follows that the linear connection is given

by

Γσ+ρµ = Ea
σ∂µE

a
ρ = −Ea

ρ ∂µEa
σ (7.40)

which is known as the Weitzenböck connection. If the metric is defined by taking the

inertial frame as the vielbein

gµν = ηabEa
µEb

ν (7.41)

then from (7.39) it obviously follows that the Weitzenböck connection is metric compatible

∇+
ρ gµν = 0 (7.42)

An outstanding property of the Weitzenböck connection is that its corresponding spin

(Lorentz) connection is vanishing

A a
+bµ = Eb

σ∇µEa
σ = 0 (7.43)

for inertial frames. Inertial frames are related to one another through global Lorentz

transformations,

Ea
µ(x)→ Λa

bEb
µ(x) . (7.44)

Note that by performing a local Lorentz transformation

Ea
µ(x)→ Λa

b(x)Eb
µ(x) , ∂µΛa

b 6= 0 (7.45)

one passes to a non-inertial frame which does not satisfy (7.39). As a consequence the

spin connection in the transformed frame is non-vanishing but still trivial (i.e. flat),

A a
+bµ → Λb

c∂µΛc
a . (7.46)

It follows directly from (7.43) that the Riemann tensor also vanishes

Ra
+bµν = 0 (7.47)

which, as a consistency check, one could also show using the Weitzenböck linear con-

nection. This means that, beside the metric, the only nontrivial fundamental tensor in

teleparallel geometry is torsion, which is given (using the inertial frame) by

T µ+νρ ≡Γµ+ρν − Γµ+νρ

=− ξµνρ (7.48)
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where the anholonomy ξ was defined in (7.32).

The simplest Lagrangians of teleparallel gravity theories are of the form [92]

Stg =

∫
ddxE

(
c1 T

ρ
+µνT

+µν
ρ + c2 T

ρ
+µνT

νµ
+ ρ + c3 T

ρ
+µρT

+
νµ
ν
)

(7.49)

It can be shown that if one takes

c1 =
1

4
, c2 =

1

2
, c3 = −1 (7.50)

then (7.49) becomes equal, up to a boundary term, to the Einstein-Hilbert action. The

theory based on this action is usually called the teleparallel equivalent of General Rela-

tivity (TEGR). One of the advantages of the teleparallel formulation (over the Einstein-

Hilbert one) is having a manifestly diff-covariant Lagrangian which contains derivative

terms only up to first order. Teleparallel gravity theories were first studied by Albert

Einstein already in the 1920’s [93].

Let us now finally connect the geometry emerging from the MHS symmetry with

teleparallel geometry. Comparing their respective linear connections, (7.30) and (7.40),

we see that

Γµνρ = Γµ+ρν (7.51)

i.e., our linear connection is the opposite of the teleparallel one. It is then not strange

that torsions are related by

T µνρ = −T µ+νρ . (7.52)

This means that the covariant derivative induced by MHS symmetry can be written in

terms of the covariant derivative of teleparallel geometry

∇ = ∇+ − T+ . (7.53)

Using (7.52) and (7.53) we can express any covariant expression in the teleparallel ge-

ometry as a covariant expression in the opposite of teleparallel geometry. As a special

case, it means that a manifestly covariant EoM in the emergent MHS geometry can be

expressed as a manifestly covariant EoM in teleparallel geometry, and vice versa. This

will be important below in the discussion of s = 2 sector of EoM in the MHSYM model.

Teleparallel gravity can be obtained by gauging the group isometric to the group

of spacetime translations [94, 95, 96]. As the global MHS transformations have such a

subgroup (n = 1 sector), it is not surprising that there is a connection between the MHS

theory and teleparallel gravity.
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7.2 MHSYM model in the s ≤ 2 sector

In view of the preceding discussion on the induced spacetime geometry in the MHS con-

struction, it is interesting to study the s ≤ 2 sector of EoM of the MHSYM model. We

put (7.4) into the MHSYM EoM

D?aT ab(x, u)
.
= 0 (7.54)

and take into consideration only the purely s ≤ 2 components. The s = 1 component of

the EoM is given by

0 = Eb
ν∂νF

ba − ξνba∂νAb + . . . (7.55)

where F is the 2-form field strength of the spin-1 U(1) spacetime vector potential 1-form

A, i.e.

Fab =Ea
µEb

νFµν = Ea
µEb

ν(∂µAν − ∂νAµ)

=Ea
ν∂νAb − Ebν∂νAa + Ac ξ

c
ab . (7.56)

The s = 2 component of the EoM is

0 = Eb
ν∂νξ

µba − ξνba∂νEbµ + . . . . (7.57)

After some manipulation we can rewrite this equation in the equivalent form

0 = Ec
ν∂νξ

abc − ξacd ξcdb + . . . . (7.58)

Also, using (7.58) and (7.56) we can write the s = 1 EoM component (7.55) as

0 = Eb
ν∂νF

ba − ξbcaFbc + . . . (7.59)

which is manifestly U(1)-gauge invariant.

Terms denoted by ellipses, and also complete s > 2 components of EoM, vanish if all

s > 2 components of the MHS vielbein vanish. This is a consequence of the fact that the

MHSYM theory can be consistently truncated to the low-spin (s ≤ 2) sector at the level

of EoM (though we keep in mind limited applicability of this approach for a complete

description of the MHSYM theory).

Let us rewrite the low-spin EoM (7.58-7.59) within the framework of teleparallel ge-

ometry by using (7.52) and the fact that in teleparallel gravity the Lorentz connection is
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vanishing in inertial frames so the Lorentz covariant derivative is simply the coordinate

derivative

D+
µ = ∂µ =⇒ D+

a = Ea
µ∂µ . (7.60)

Using all of this we can write (7.59) as

D+
b F

ba + T bca+ Fbc = 0 (7.61)

which is now fully diff- and U(1) covariant. Similarly, (7.58) becomes

D+
c T

abc
+ + T a+cd T

cdb
+ = 0 (7.62)

which is manifestly diff-covariant. We stress that in this form all objects in (7.61) and

(7.62) should be calculated using the Weitzenböck connection. In other words, they are

formally written within the realm of teleparallel gravity, and not the geometry induced

by the MHS symmetry.

The equation (7.62) was first written by Albert Einstein in 1929, with a motivation

to unify electromagnetism with gravity [93].2. Einstein observed that it is not possible

to write a diff-covariant action which produces (7.62) as its EoM inside the realm of the

teleparallel geometry, because the left hand side is not covariantly conserved (in particular

it does not belong to the class of theories defined in (7.49)). It is amusing that we obtained

EoM (7.62) from an action principle by truncating the MHSYM theory.

7.3 Classical vacuum solutions

The complete (non-linear) EoM of the MHSYM theory with no source is

D?aT ab(x, u)
.
= 0 (7.63)

or explicitly

[eb(x, u) ?, [ea(x, u) ?, eb(x, u)]] = 0 . (7.64)

The simplest solution of the Yang-Mills case, as we have seen in (2.77) is given by the

Minkowski background

ea(x, u) = ua = δµauµ . (7.65)
2For this reason he added by hand one more equation to EoM in an attempt to project out unwanted

degrees of freedom. Already in 1930 he abandoned this attempt.
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We can use the the Minkowski background as a motivation to examine more general

vacuum solutions and seek for them in the following form

ea(x, u) = Ea
µ(x)uµ . (7.66)

As we’ve argued above, the equations of motion and the gauge symmetry are consistent

if we restrict our attention to fields linear in uµ, which we already dubbed the "spin 2"

sector, however, our motivation here is more inclined towards exact vacuum solutions than

truncated configurations. We will examine possible solutions in the pure Yang-Mills case

as well as the case with a non-vanishing cosmological constant as introduced in chapter

5.

7.3.1 Spherical background solution for MHS Yang-Mills theory

We use the proposed form for the background solution (7.66) and insert it into the

MHSYM EoM (7.64). Only the linear terms in uµ survive and we arrive at

Ea
µ∂µξ

νab − ξµab∂µEaν = 0 (7.67)

where ξµab = Eaν∂νE
bµ − Ebν∂νE

aµ was already introduced in (7.32). Latin indices are

raised/lowered with the Minkowski metric ηab. We will seek for a spherically symmetric

solution, and for that reason we introduce an Ansatz:

Ea
µ(t, x, y, z) = diag(α(r), β(r), β(r), β(r)) (7.68)

Where r =
√
x2 + y2 + z2. It is straightforward to insert (7.68) into (7.67) and calculate

the necessary equations. Of the 16 field equations, the non-trivial are:

β(r)

(
−α′′(r)− 2α′(r)

r

)
− α′(r)β′(r) = 0 (7.69)

β(r)
(
β′(r)

(
2x2 + y2 + z2

)
+ r

(
y2 + z2

)
β′′(r)

)
+ r

(
y2 + z2

)
β′(r)2 = 0 (7.70)

β(r)
(
β′(r)

(
x2 + 2y2 + z2

)
+ r

(
x2 + z2

)
β′′(r)

)
+ r

(
x2 + z2

)
β′(r)2 = 0 (7.71)

β(r)
(
β′(r)

(
x2 + y2 + 2z2

)
+ r

(
x2 + y2

)
β′′(r)

)
+ r

(
x2 + y2

)
β′(r)2 = 0 (7.72)

β(r) (β′(r)− rβ′′(r))− rβ′(r)2 = 0 (7.73)

where prime stands for the derivative against the argument of a function. Equations

(7.70-7.72) lead to the condition

β(r) (2β′(r) + rβ′′(r)) + rβ′(r)2 =0 (7.74)
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which we can insert into (7.73) to obtain a simple equation for β(r).

β(r)β′(r) = 0 .

Thus β(r) = B is a constant. Upon using this solution and inserting it into (7.69) we

finally obtain

α(r) = D +
C

r
(7.75)

where C,D are integration constants.

The geometric interpretation developed in the previous section enables us to use the

obtained solution and compute the induced metric (7.41)

ds2 = − 1(
D + C

r

)2dt
2 +

1

B2
(dx2 + dy2 + dz2) . (7.76)

We can calculate the curvature tensors following the definitions (7.30-7.36). The connec-

tion is fundamentally not free of torsion, and one has to be careful not to use expressions

ordinarily useful in general relativity. As an interesting result, we report the value of the

Ricci scalar

R =
4B2C2

r2(Dr + C)2
. (7.77)

We can see that the singularities r = 0,−C
D

are not coordinate artifacts.

7.3.2 Spherical background solution for MHS Yang-Mills theory

with a cosmological constant

In the more general MHS model which we explored in chapter 5, the equation of motion

contains an additional linear term in the MHS vielbein

[eb(x, u) ?, [ea(x, u) ?, eb(x, u)]] = λ1e
b(x, u) (7.78)

The theory is changed substantially with λ1 6= 0 with respect to the pure MHSYM, as

now the Minkowski background is no longer a solution. We can again consider finding a

background solution in the form of (7.66), and the feature of having only linear terms in

uµ remains. We arrive at the field equations

Ea
µ∂µξ

νab − ξµab∂µEaν = λ1E
bν , (7.79)
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where again ξµab = Eaν∂νE
bµ −Ebν∂νE

aµ. A spherically symmetric Ansatz as (7.68) can

again be used, and with it the non-trivial field equations are obtained as

β(r)

(
−α′(r)β′(r)− 2

r
β(r)α′(r)− β(r)α′′(r)

)
= −4λ1α(r) (7.80)

(y2 + z2)rβ′(r)2 + β(r)((2x2 + y2 + z2)β′(r) + r(y2 + z2)β′′(r)) = 4r3λ1 (7.81)

(x2 + z2)rβ′(r)2 + β(r)((x2 + 2y2 + z2)β′(r) + r(x2 + z2)β′′(r)) = 4r3λ1 (7.82)

(x2 + y2)rβ′(r)2 + β(r)((x2 + y2 + 2z2)β′(r) + r(x2 + y2)β′′(r)) = 4r3λ1 (7.83)

−rβ′(r)2 + β(r)(β′(r)− rβ′′(r)) = 0 (7.84)

We can proceed to find a solution in the same way. The combination of (7.81 - 7.83) leads

us to the conclusion

2r3β′(r)2 + β(r)
(
β′(r)4r2 + 2r3β′′(r)

)
= 12r3λ1 . (7.85)

rβ′(r)2 + β(r) (2β′(r) + rβ′′(r)) = 6rλ1 . (7.86)

Along with (7.84) we can obtain a differential equation for β(r)

β(r)β′(r) = 2rλ1 . (7.87)

We solve it and find the solution for

β2(r) = 2λ1(r2 − c1) . (7.88)

Now we insert this solution into (7.80) and find a differential equation for α(r)

α′′(r)(r2 − c1) + α′(r)(3r − 2
c1

r
)− 2α(r) = 0 . (7.89)

The solution to this differential equation is not too difficult to find, and it is given by

α(r) =
d1

r
cos

(√
3 arccos

(
r
√
c1

))
+
d2

r
sin

(
2
√

3 arcsin

(√
1√
2
− r√

2c1

))
(7.90)

We can also examine the special case when the integration constant c1 vanishes. Then

it is obvious from (7.88) that λ1 can be only positive. The differential equation for α(r)

becomes simpler

r2α′′(r) + 3rα′(r)− 2α(r) = 0 . (7.91)

The solution for α(r) is now given by

α(r) = d3 r
√

3−1 + d4r
−
√

3−1 . (7.92)
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With the solutions for α(r) and β(r) it is straightforward to calculate the curvature

tensors. The explicit expression for e.g. the Ricci scalar in the c1 = 0 case is

R = −2λ1

2d4

((
5
√

3− 24
)
d3r

2
√

3 + 5
√

3d4

)
(
d3r2

√
3 + d4

)2 − 5
(

1 +
√

3
) (7.93)

Specifically, there are two cases in which the Ricci scalar becomes constant;

R
∣∣∣
d3=0

= −λ1 10(
√

3− 1) (7.94)

R
∣∣∣
d4=0

= λ1 10(
√

3 + 1) . (7.95)

The spacetime element in these two specific cases becomes

ds2 = − 1

(d3)2r2
√

3−2
dt2 +

1

(2λ1r2)
(dx2 + dy2 + dz2) (7.96)

ds2 = −r
2
√

3+2

(d4)2
dt2 +

1

(2λ1r2)
(dx2 + dy2 + dz2) (7.97)

We can conclude that the addition of the "cosmological constant" term on the action for

the MHS model admits background solutions whose scalar curvature is constant, a feature

shared with spaces of maximal symmetry.
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Chapter 8

Conclusion and outlook

We have realized a gauging procedure of the higher-spin symmetries (2.2)

δεφ(x) =
∞∑
n=0

(−i)n+1εµ1...µn ∂µ1 · · · ∂µnφ(x) .

The appearance of the Moyal product in our construction can be seen as a way to close

the algebra of symmetries in case we promote the variation parameters to functions on

spacetime. Then, the gauge algebra is given by a Moyal bracket of functions on the master

space (2.34)

[δε1 , δε2 ] = δi[ε1?,ε2] .

A complete realization of our gauge field off-shell was done on a master space, on which

we have formulated a Yang-Mills-like theory. Differently from a deformation program of

finding interacting theories from known free theories, we have relied on symmetries of our

gauge field and identified the general MHS covariant construction. This allowed us to

see that there can be different phases of the theory, of which only one corresponds to the

Yang-Mills like construction we started with.

The MHSYM model comes with an action principle, it is perturbatively stable and

admits a description in terms of the L∞ algebra. These are qualitative features that we

expect from a well defined theory.

We moved on to an analysis of the particle spectrum of the MHSYM theory. One

direction of this analysis required an explicit construction of a new representation of the

Lorentz group on the space of multi-dimensional Hermite functions. These results can

be used even without the context of the MHS theory. A possible use could be in the
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context of computer graphics [97], since we have provided explicit expressions for 2D and

3D rotations of Hermite expansions.

An analysis of the particle spectrum based on the differential equations posed by

the little group for massless particles lead us to the conclusion that our theory contains

degrees of freedom of infinite spin, and we have identified an on-shell basis of polarization

functions.

The MHS symmetry and the master space can be explored in further directions. We

have shown an analysis of the conservation laws based on the MHS symmetry which led

to an expression of an infinite tower of conserved currents. Reliance on the symmetries

also enabled us to put forward new candidates for theories based on these structures.

Within the framework of the formalism, we were also able to describe matter and show

how it couples to the MHS gauge potential minimally. We calculated the simplest scatter-

ing amplitudes in the lowest order in the perturbation theory and found that scattering of

simple matter is allowed only for sets of momenta being equal in the final as in the initial

state. In the case of master space matter in the fundamental representation the scattering

amplitude displayed a softer behaviour with respect to quantum electrodynamics.

Finally, we have focused on a possible geometric interpretation of the low-spin sector of

the theory. Although a Taylor expansion in the auxiliary space is not completely rigorous

(the component fields are then never independent), we were still able to extract valuable

geometric information about the theory, albeit working only on-shell. The reminiscence

to teleparallel geometry was not so surprising, as translations form a subgroup of the

gauged symmetries (2.2).

Possible background solutions of the full theory do not necessarily follow the same

convergence properties as the potential fields (e.g. the Minkowski vacuum ea = ua grows

linearly in the auxiliary space), so we have analyzed additional background solutions of

the similar form, both in the MSHYM case, and in the case with a cosmological constant

term present in the action. Since then the equations for the background solutions were of

the spin-2 form, results from the low-spin sector were applied to this goal.

The MHS theory in its current form is not a finalized model. As mentioned above, the

amplitude for the tree-level scattering of minimal matter contains delta functions in the

momenta. To find the cross-section, the amplitude would have to be squared and there

would appear a factor of δ(d)(0). This divergent factor could be interpreted as the volume

129



of the auxiliary space. Within the calculation, it is noticeable that the origin of the delta

functions is the completeness relation of the basis functions, or in other words, in the sum

over the entire particle configuration space. An analogous problem appears when finding

inclusive cross-sections with the outer legs representing the MHS particles.

A future perspective would then be to find a way of restricting the configuration space

in some way; ideally to contain a single irreducible representation of the Poincaré group.

In this regard, it might prove interesting to still rely on the MHS symmetries and the

master space, and try to modify the dynamics of the theory in a way to make contact

with [73, 74, 75, 76]. One could also consider restricting the auxiliary space in some

manner which would reduce the configuration space as a consequence, but care must be

taken that the restriction is done in an MHS covariant manner.

The MHS structures are very rich and we hope they will have a say in further research

in higher spin and infinite spin particles.
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Appendix A

Mathematical definitions and results

A.1 Moyal star product

We give the definition and the most important properties of the Moyal star product [98,

99] relevant to this work. Detailed expositions are available in [100, 101, 102].

For functions a(x, u), b(x, u) defined on R2n, the Moyal star product is defined as

a(x, u) ? b(x, u) =a(x, u) exp

[
i

2

(←
∂ x ·

→
∂u −

→
∂ x ·

←
∂u

)]
b(x, u) (A.1)

For general functions, a Moyal product includes an infinite number of derivatives both

over x and u, and can be seen as a deformation of the ordinary multiplication rule

a(x, u) ? b(x, u) =a(x, u)b(x, u) +
i

2

(
∂a(x, u)

∂xµ
∂b(x, u)

∂uµ
− ∂a(x, u)

∂uµ

∂b(x, u)

∂xµ

)
+ · · · (A.2)

For example,

xµ ? xν =xµxν (A.3)

xµ ? uν =xµuν +
i

2
δµν (A.4)

uµ ? uν =uµuν (A.5)

uν ? x
µ =uνx

µ − i

2
δµν . (A.6)

The Moyal commutator and anticommutator are defined naturally as

[a(x, u) ?, b(x, u)] ≡ a(x, u) ? b(x, u)− b(x, u) ? a(x, u) (A.7)

{a(x, u) ?, b(x, u)} ≡ a(x, u) ? b(x, u) + b(x, u) ? a(x, u) . (A.8)

The Moyal product is
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• Hermitean under complex conjugation

(a(x, u) ? b(x, u))∗ = b(x, u)∗ ? a(x, u)∗ . (A.9)

• Associative (
a(x, u) ? b(x, u)

)
? c(x, u) = a(x, u) ?

(
b(x, u) ? c(x, u)

)
(A.10)

• Obeys the Jacobi identity

[a ?, [b ?, c]] + [c ?, [a ?, b]] + [b ?, [c ?, a]] = 0 (A.11)

• Follow’s the Leibniz rule

[a ?, b ? c] = [a ?, b] ? c+ b ? [a ?, c] . (A.12)

For a class of functions with well behaved fall-of conditions the Moyal product can be

calculated in the integral form

a(x, u) ? b(x, u) =

∫
ddy ddz

ddv

(2π)d
ddw

(2π)d
ei(yw−zv)a(x+

y

2
, u+ v)b(x+

z

2
, u+ w) . (A.13)

A very useful and convenient way to make calculations with the Moyal product is by

promoting coordinates to operators, of which we note one possible way:

a(x, u) ? b(x, u) = a(x,u)b(x,u†) (A.14)

with

u = u− i

2
~∂x, u† = u+

i

2

←−
∂ x (A.15)

Moyal commutator of real functions is purely imaginary, while the Moyal anticommutator

of real functions is real.

Under integration it satisfies the adjoint property∫
ddx ddu

(
a(x, u) ? b(x, u)

)
c(x, u) =

∫
ddx ddu a(x, u)

(
b(x, u) ? c(x, u)

)
=

∫
ddx ddu b(x, u)

(
c(x, u) ? a(x, u)

)
(A.16)

where a, b and c are square-integrable functions on the master space. If we put c(x, u) = 1

we obtain∫
ddx ddu a(x, u) ? b(x, u) =

∫
ddx ddu a(x, u) b(x, u) + (boundary terms) . (A.17)
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The boundary terms are a sum of total derivatives in x and u spaces.

∂xa (Ca(x, u)) + ∂au(Da(x, u)) . (A.18)

The ? - exponential is defined as

ea(x,u)
? =

∞∑
n=0

1

n!
a(x, u)?n (A.19)

where a(x, u)?n is the Moyal product with n factors of a(x, u)

a(x, u)?n = a(x, u) ? a(x, u) ? . . . ? a(x, u) . (A.20)

A.2 Weyl-Wigner map

The Weyl-Wigner map (or correspondence) is an invertible integral transformation be-

tween functions defined on R2n and operators on a Hilbert space. First appearance is in

[103, 104] while reviews can be found in [100, 105]. For use in physics of higher spins, see

[106] and appendices of [44, 43].

The Wigner map takes an operator F̂ acting on the Hilbert space H and outputs a

function f(x, u) (dubbed symbol of the operator) on a phase space (master space) spanned

by {xa, ua} .

W [F̂ ] = f(x, u) =

∫
ddq 〈x− q

2
|F̂ (X̂, Û)|x+

q

2
〉eiq·u (A.21)

The inverse is named the Weyl map and it is given by

W−1[f(x, u)] = F̂ (X̂, Û) =

∫
ddx ddy

ddk

(2π)d
ddu

(2π)d
f(x, u) eik·(x−X̂)−iy·(p−P̂ ) (A.22)

The Weyl-Wigner map relates complex conjugation of symbols to Hermitean conjugation

of operators

f ∗(x, u)↔ F̂ † . (A.23)

The trace of an operator is given by the integral of the corresponding function over the

master space

Tr(F̂ ) =

∫
ddx

ddu

(2π)d
f(x, u) . (A.24)

A product of operators on the Hilbert space in the Weyl (completely symmetric) ordering

becomes the Moyal star product of functions on the master space

W [F̂1 · F̂2] = f1(x, u) ? f2(x, u) , (A.25)
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and vice-versa

W−1[f1(x, u) ? f2(x, u)] = F̂1 · F̂2 . (A.26)

The trace of a product of operators is then

Tr[F̂1 · F̂2] =

∫
ddx

ddu

(2π)d
f1(x, u) ? f2(x, u) . (A.27)

A.3 From Lie to L∞

The identification of such a rich mathematical structure as is the L∞ algebra (also named

strongly homotopy Lie algebra) can seem almost miraculous, so we will try to define it

through a gradual generalization of Lie algebras in the following way:

Lie alg.→ graded Lie alg.→differential graded Lie alg.→ diff. grad. homotopy Lie. alg

→strongly homotopy Lie algebra

A Lie Algebra is a vector space together with a bilinear antisymmetric product named

the Lie bracket that satisfies the Jacobi identity. Let us name the vector space V = X0

with elements x1, x2, ... and denote the Lie bracket as

[x1, x2] ≡ `2(x1, x2) = −`2(x2, x1); `2 : X0 ⊗X0 → X0 (A.28)

In this notation, the Jacobi identity is

`2(x1, `2(x2, x3) + `2(x3, `2(x1, x2)) + `2(x2, `2(x3, x1)) = 0 . (A.29)

We can generalize this construction in small doses. First, consider the underlying vector

space to be graded

V =
⊕
n

Xn, n ∈ N0 (A.30)

with grading denoted by x ≡ deg(x) = n for x ∈ Xn. The grading is introduced in a way

which influences the Lie bracket, so that instead of an anticommuting bilinear product,

we get a graded-commuting bilinear product

`2(x1, x2) = (−)1+x1x2`2(x2, x1) (A.31)

and the Jacobi identity is generalized accordingly

`2(`2(x1, x2), x3)+(−)x1(x2+x3)`2(`2(x2, x3), x1)+(−)(x2+x1)x3`2(`2(x3, x1), x2) = 0 . (A.32)
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In case all vectors come from X0 as before, we return to a (non-graded) Lie algebra.

In the second step, having a series of vector spaces each with a designated degree

(grading), we can add a new linear operator

`1 : Xn → Xn−1, `1 : X0 → 0 (A.33)

with the property of being nilpotent `2
1 = 0, and respecting the (graded) Leibniz rule

`1(`2(x1, x2)) = `2(`1(x1), x2) + (−)x1`2(x1, `1(x2)) . (A.34)

An operator respecting these properties is called a differential. A graded Lie algebra

equipped with a differential is a differential graded Lie algebra and is in itself very useful,

but we go further.

The next to final step is to relax the notion of the Jacobi identity holding identically.

So far we have defined operators

• `1 with one input lowering the degree by 1

• `2 with two inputs that leaves the degree intact

so let’s introduce also `3 with three inputs that raises the degree by 1. The Jacobi identity

(A.32) leaves the degree intact and takes three inputs. Let us now allow for (A.32) to

hold only up to an element of the same space, which we can achieve by a combination of

operators `1 and `3.1 With this generalization, we get

`2(`2(x1, x2), x3)+(−)x1(x2+x3)`2(`2(x2, x3), x1)+(−)(x2+x1)x3`2(`2(x3, x1), x2) = `1(`3(x1, x2, x3)) .

(A.35)

Since the generalized Jacobi identity now holds only up to a homotopy (element of the

same space), this mathematical structure is called a differential graded homotopy Lie

algebra, and it is evidently much more general than a Lie algebra.

In the final step, we let loose the possible grading numbers from N0 to Z, allow for an

existence of all operators `k with k ∈ N, and establish a tower of identities generalizing

(A.34, A.35), which are quadratic in the operators `k and hold only up to a higher ho-

motopy. Such vastly general structures are named strongly homotopy Lie algebras or L∞

algebras.
1To be precise, the identity (A.35) holds only for elements xk which have `1(xk) = 0, which is not

crucial for the motivational presentation. The exact form of this identity is given when the full L∞

algebra is defined.
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A.4 Representations of ISO(2)

In the case of massless particles, the little group is ISO(2), isomorphic to the isometry

group of a 2D Euclidean plane. Since the faithful representations of this group are less

known than the helicity representations, we report on the construction of its unitary irre-

ducible representations following [72]. The generators A,B, J3 are mapped into Hermitean

operators.

Angle basis

The first possibility of building the representation, named the angle basis, starts by picking

J3 withW 2 as the maximal set of commuting operators. Similarly to the known procedure

for so(3), we define the operators

P± = A± iB (A.36)

which satisfy

[J3, P±] = ±P±, [P+, P−] = 0 . (A.37)

We can rewrite W 2 = P+P− = P−P+ and emphasize that P †+ = P−. From (4.60) it is

readily seen that W 2 has a positive eigenvalue which we denote by µ2.

Now we choose a simultaneous eigenvector of J3,W
2 denoted by |µ, σ〉 and normalized

to 1

W 2 |µ, σ〉 = µ2 |µ, σ〉

J3 |µ, σ〉 = σ |µ, σ〉 .

Due to the commutation relations we realize that P± act as raising and lowering operators

J3(P± |µ, σ〉) = (σ ± 1)(P± |µ, σ〉) . (A.38)

The normalization of raised/lowered states would turn out to be

〈µ, σ ± 1|µ, σ ± 1〉 = 〈µ, σ|P †±P± |µ, σ〉 = 〈µ, σ|W 2 |µ, σ〉 = µ2 (A.39)

A special possibility is µ2 = 0. In that case, we recover the usual one-dimensional unitary

representation for massless particles since then P± |0, σ〉 = 0. The only remaining gener-

ator acting non-trivially is J3 whose eigenvalues correspond to helicity J3 |0, σ〉 = σ |0, σ〉.
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For µ2 6= 0, we define a new normalization so that all states are normalized to unity

|µ, σ ± 1〉 ≡ P± |µ, σ〉
(
± i
µ

)
. (A.40)

A very important feature in this case is that the representation is necessarily infinite-

dimensional; starting with some σ0, say σ0 = 0, we can construct infinitely many new

vectors with helicity σ = 0,±1,±2, ... within a single value of µ2. This is the reason that

particles corresponding to this representations are named "infinite-spin" particles. The

matrix elements of the generators in this representation are

〈µ, σ′| J3 |µ, σ〉 =σδσσ′

〈µ, σ′|P± |µ, σ〉 =∓ iµδσ′σ±1

By exponentiation it can be seen that the representation matrices for a finite transforma-

tion are given by [72]:

Dµ(bA, bB, θ)
m′
m = Dµ(b, θ)m

′
m = ei(m−m

′)φJm−m′(µb)e
−imθ (A.41)

The three parameters (bA, bB, θ), each correspond to one of the operators A,B, J3. The

first two parameters can be written as a 2-vector in Euclidean space b = (b, φ) in "polar"

coordinates. Jn is the Bessel function of the first kind.

Jα(x) =
∞∑
j=0

(−1)j

j! Γ(j + α + 1)

(x
2

)2j+α

(A.42)

Another representation valid for integer n is

Jn(x) =
1

2π

∫ π

−π
ei(x sin τ−nτ) dτ (A.43)

Plane Wave basis

The other possible basis comes from choosingA,B withW 2 as a maximal set of commuting

operators and building the representation with their eigenvectors. This can be done with

the method of induced representations. The two generators A,B can be written as a vector

T = (A,B). We can then choose a standard vector of their eigenvalues as ~µ0 = (µ, 0).

There is only one independent eigenstate of T since it does not commute with J3

A |~µ0〉 =µ |~µ0〉 (A.44)

B |~µ0〉 =0 (A.45)

W 2 |~µ0〉 =µ2 |~µ0〉 (A.46)
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Due to the commutation relations of A,B with J3 it is visible that T transforms as a

Euclidean vector under rotations R(θ) = e−iJθ, so

e−iθJTke
iθJ = TmR(θ)mk (A.47)

Thus TkR(θ) |~µ0〉 = µkR(θ) |~µ0〉, where µk is the k-th component of the vector obtained

by rotating ~µ0. This way we can build the entire vector space spanning the irreducible

sector with µ2

|~µ〉 = R(θ) |~µ0〉 (A.48)

The set of vectors (continuous set, since ~µ is a vector with two continuous parameters -

µ and θ) {|~µ〉} forms the irreducible vector space. Here, and in the fact that µ2 can take

on arbitrary real values we find the origin of the name "continuous spin" particle. The

representation of the group can again be obtained by exponentiation:

T (b) |~µ〉 = e−ib·~µ |~µ〉 (A.49)

R(φ) |~µ〉 = |~µ′〉 (A.50)

where ~µ′ = R(φ)~µ = (µ, θ + φ). The ortonormality condition can be chosen as

〈~µ′|~µ〉 = 〈µ, θ′|µ, θ〉 = 2πδ(θ′ − θ) (A.51)

The vectors are orthogonal if ~µ are different in length and when they are equal length but

of different angle.
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Appendix B

Details for calculations in MHS theory

B.1 Second order (metric like) gauging

In chapter 2 we have performed the gauging procedure and introduced the gauge potential

by

ua → ua + ha(x, u) (B.1)

This is not the only possibility, and here we display a different approach which, as it

turns out, leads to a composite field. In case where m = 0 for the scalar field action

(2.20) written as

S[φ] =

∫
ddx

ddu

(2π)d
u2 ? Wφ(x, u) (B.2)

we have a symmetry for a rigid gauge parameter ε(u) 1

δS = i

∫
ddx

ddu

(2π)d
(
[ε(u) ?, Wφ(x, u) ? u2] +Wφ(x, u) ? [u2 ?, ε(u)]

)
= 0 . (B.3)

As the Moyal commutator is a total derivative both in x and u variables, the first term

is only a boundary term. The second term has a Moyal commutator of only u-dependent

quantities, so it vanishes.

Considering a local symmetry ε = ε(x, u), the variation of the free field action is

non-vanishing

δS = i

∫
ddx

ddu

(2π)d
Wφ(x, u) ? [u2 ?, ε(x, u)] . (B.4)

To ensure symmetry is preserved, in the spirit of Yang Mills theory, this calls for a

compensating field

u2 → u2 − h(x, u) . (B.5)
1To see this, add and subtract Wφ(x, u) ? u2 ? ε(u) under the integral.
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To first order in ε(x, u), by neglecting total derivatives under the integral, we have

δS =

∫
ddx dduWφ ? (−δh+ i[(u2 − h) ?, ε]) . (B.6)

To keep the action symmetric under local transformations, we can infer that h(x, u) must

transform as

δh(x, u) = 2u · ∂xε(x, u)− i[h(x, u) ?, ε(x, u)] (B.7)

reproducing the result in [43]. As we have shown above in chapter 6, the field h(x, u) is

actually not fundamental, instead given by

h(x, u) = 2uaha(x, u) + ha(x, u) ? ha(x, u) (B.8)

B.2 Details for the interaction with simple matter

As we have seen in chapter 6, ordinary matter couples to the MHS field through a minimal

coupling of simple currents to a tower of HS fields. Here we provide the details of that

calculation. The interaction term (6.5) is

S(int)
m [φ, h] =

∫
ddx ddu

(
φ∗r(x) ? Krs

int(x, u) ? φs(x)
)
δd(u) . (B.9)

In the geometric phase we have ea(x, u) = ua + ha(x, u). Following (6.3), the interacting

part is given by

Kint(x, u) =h(x, u) = 2uaha(x, u) + ha(x, u) ? ha(x, u) (B.10)

where h(x, u) is a composite object obtained from the MHS potential, already introduced

in (2.97). If we now use a Taylor expansion in the auxiliary coordinates, and a compactified

notation

h(x, u) =
∞∑
s=0

hµ1···µs
(s) (x)uµ1 · · ·uµs =

∞∑
s=0

hµ1···µs
(s) (x) (uµ)s (B.11)

we can insert this into (B.9) and easily integrate over the auxiliary space, facilitated by

the presence of the Dirac delta function. We will use the integral representation of the

Moyal product (A.13). We start by

h(x, u) ? ϕ(x) =

∫
ddz

ddv

(2π)d
e−izvh(x, u+ v)ϕ

(
x+

z

2

)
(B.12)
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and

ϕ∗(x) ? h(x, u) ? ϕ(x) =

∫
ddy′ddz

ddw′

(2π)d
ddv

(2π)d
eiy
′w′−izvϕ∗

(
x+

y′

2

)
h(x, u+ v + w′)ϕ

(
x+

z

2

)
.

We now integrate over the auxiliary space u with the delta function present∫
dduϕ∗(x) ? h(x, u) ? ϕ(x)δ(d)(u) =

∫
ddy′ddz

ddw′

(2π)d
ddv

(2π)d
eiy
′w′−izvϕ∗

(
x+

y′

2

)
h(x, v + w′)ϕ

(
x+

z

2

)
.

If we now employ the expansion (B.11), the integral above becomes∫
ddy′ddz

ddw′

(2π)d
ddv

(2π)d

∞∑
s=0

hµ1···µs
(s) (x) (vµ + w′µ)seiy

′w′−izvϕ∗
(
x+

y′

2

)
ϕ
(
x+

z

2

)
=

∫
ddy′ddz

ddw′

(2π)d
ddv

(2π)d

∞∑
s=0

hµ1···µs
(s) (x)

s∑
k=0

(
s

k

)
(vµ)k(w′µ)s−keiy

′w′−izvϕ∗
(
x+

y′

2

)
ϕ
(
x+

z

2

)
=

∫
ddy′ddz

ddw′

(2π)d
ddv

(2π)d

∞∑
s=0

hµ1···µs
(s) (x)

s∑
k=0

(
s

k

)
(i)s(−1)k

(
∂zµ
)k
ϕ
(
x+

z

2

)(
∂y
′

µ

)s−k
ϕ∗
(
x+

y′

2

)
eiy
′w′−izv

=
∞∑
s=0

hµ1···µs
(s) (x)

s∑
k=0

(
s

k

)(
i

2

)s
(−1)k

(
∂xµ
)k
ϕ(x)

(
∂xµ
)s−k

ϕ∗(x) (B.13)

The interacting part of the action is thus given by

S(int)
m [ϕ, h] =

∞∑
s=0

∫
ddx J (s)

µ1···µs(x)hµ1···µs
(s) (x) , (B.14)

where the spin-s currents are of the form

J (s)
µ1···µs(x) =

is

2s

s∑
k=0

(
s

k

)
(−1)k

(
∂xµ
)k
ϕ(x)

(
∂xµ
)s−k

ϕ∗(x) (B.15)

=
is

2s
ϕ(x)∗

↔
∂µ1 · · ·

↔
∂µsϕ(x) . (B.16)

B.3 Curvature tensor measures triviality

Here we prove that the HS field strength measures the triviality of HS configurations, i.e.

HS master space field is pure gauge ⇐⇒ Fab(x, u) = 0 (B.17)

in a domain of configurations containing ha(x, u) = 0.

Proof. From (2.50) it follows directly that the theorem is valid in the linear approximation,

since the linear term in (2.84) can be interpreted as the exterior derivative of a form

hµ1...µn
a (x) if Greek indices µj are treated as internal. It means that in the linearized
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theory if and only if Fab(x, u) = 0 in a ball, there exists a master space function ε(x, u)

such that

ha(x, u) = ∂a ε(x, u) (B.18)

in the same ball. But this is just the linearized pure gauge condition for the MHS potential

ha(x, u).

Let us extend this to large fields. First we prove the left-to-right arrow in (B.17). If

the MHS vielbein field is pure gauge, then by (2.66) we can write it as

ea(x, u) = e−i E(x,u)
? ? ua ? e

i E(x,u)
? = ua − ie−i E(x,u)

? ? ∂xae
i E(x,u)
? (B.19)

so a pure gauge MHS master field ha(x, u) is of the form

ha(x, u) = −ie−i E(x,u)
? ? ∂xae

i E(x,u)
? . (B.20)

Plugging this into (2.50), and using the identities

e−i E(x,u)
? ? ei E(x,u)

? = 1 , e−i E(x,u)
? ? ∂xae

i E(x,u)
? = −∂xae−i E(x,u)

? ? ei E(x,u)
? (B.21)

we conclude that MHS field strength Fab(x, u) vanishes for pure gauge HS fields. There-

fore,

HS phase space field is pure gauge =⇒ Fab(x, u) = 0 . (B.22)

Proving the opposite direction of (B.17) happens to be more involved. We want to

find the general solution of the equation

Fab(x, u) = 0 . (B.23)

To do this, let us start from the linearized solution (B.18) and build a full solution by a

formal perturbative series2

ha(x, u) =
∞∑
n=1

∆(n)
a (x, u) . (B.24)

Introducing (B.24) into (B.23), using (2.50), and collecting the terms of the same order,

we obtain

∂xa∆
(n)
b (x, u)− ∂xb ∆(n)

a (x, u) = −i
n−1∑
r=1

[∆(r)
a (x, u) ?, ∆

(n−r)
b (x, u)] . (B.25)

2In this construction it is not assumed that the HS potential ha(x, u) is small. We can introduce a

formal parameter θ, and consider (B.24) as an expansion in θ. Eventually we put θ → 1.
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We see that it has a form which can be attacked by mathematical induction. For n = 1

it becomes

∂xa∆
(1)
b (x, u)− ∂xb ∆(1)

a (x, u) = 0 (B.26)

for which the general solution is

∆(1)
a (x, u) = ∂xaE(x, u) (B.27)

where E(x, p) is an arbitrary function. For n = 2 we get

∂xa∆
(2)
b − ∂

x
b ∆(2)

a =− i [∆(1)
a

?, ∆
(1)
b ]

=− i [∂xaE ?, ∂xb E ]

=− i

2
(∂xa [E ?, ∂xb E ]− ∂xb [E ?, ∂xaE ]) (B.28)

for which the solution is

∆
(2)
b (x, u) = − i

2
[E(x, u) ?, ∂xaE(x, u)] + ∂xaE ′(x, u) . (B.29)

The trivial exact part of the solution, which appears at every order, is of the same form

as the first-order solution; it introduces nothing new and can therefore be ignored in the

construction of the general solution. Now we conjecture that the generic solution is given

by

∆(n)
a =

(−i)n−1

n!
[E ?, [E ?, . . . [E ?, ∂aE ]] . . .] (n− 1 Moyal brackets)

=
(−i)n

n!
[E ?, [E ?, . . . [E ?, ua]] . . .] (n Moyal brackets) . (B.30)

This can be proven by induction. Using (B.30) in (B.24) gives us finally

ha(x, u) =
∞∑
n=1

(−i)n

n!
[E(x, u) ?, [E(x, u) ?, . . . [E(x, u) ?, ua]] . . .]

=e−i E(x,u)
? ? ua ? e

i E(x,u)
? − ua

=− i e−i E(x,u)
? ? ∂xae

i E(x,u)
? (B.31)

where to pass from the first to the second line we used the Baker-Campbell-Hausdorff

lemma. We have obtained (B.20), therefore we proved that

Fab(x, u) = 0 =⇒ HS potential is a pure gauge (B.32)

in some neighbourhood of ha(x, u) = 0.
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