

Advanced photocatalytic properties of ZnO thin films prepared by plasma enhanced ALD Rafaela Radičić¹, Gabriela Ambrožić^{1,2}

¹Department of Physics, University of Rijeka, Rijeka, Croatia ²Center for Micro- and Nano Sciences and Technologies, University of Rijeka, Rijeka, Croatia E-mail : rafaela.radicic@student.uniri.hr

Goals

Study of photocatalytic activity of ZnO thin films prepared by thermal and plasma enhanced Atomic Layer Deposition (ALD)

The photocatalytic degradation studies of

Results

methyl orange (MO) in the presence of ZnO thin films

Difference in photocatalytic properties of thermal and PE-ALD made ZnO thin films

Experimental methods

ALD synthesis of ZnO thin films

	Thermal ALD	PE-ALD
Precursors in ALD	diethyl zinc + H_2O	diethyl zinc + 0_2 plasma
Temperature of deposition	100 °C	100 °C
Number of ALD cycles	634	415
Thickness of ZnO	100 nm	100 nm
Dimension of silicon substra	te 0,7 cm \times 0,7 cm	0,7 cm $ imes$ 0,7 cm

Figure 1. SEM pictures of (a) thermal and (b) PE-ALD made ZnO thin films.

Measurments with UV oven

Measurments with UV lamp

Figure 3. Absorbance spectrum of MO in the present of thermal ALD made ZnO.

Measurments

Experiments were preformed "in-situ" – in quartz cuvettes with light path of 10 mm.

ZnO thin films were irradiated by two UV lamps of different strengths

✤ For measurment done with Intelli- Ray 600 UV oven was used MO solution of c = 2,425 · 10⁻³g/L.

✤ For measurments done with CAMAG UV Lamp 4 strenght 8 W and wavelength of 254 nm was used MO solution of $c = 1,21 \cdot 10^{-3}$ g/L.

The time dependent degradation process of MO in aqueous solution was monitored by Agilent Technologies Cary 60 UV/Vis spectrophotometer and analysed in QtiPlot.

References

Figure 6. Percentage photodegradation of MO

Figure 7. Percentage photodegradation of MO as a function of time.

 R. Zha, R. Nadimicherla, X. Guo, J. Mater. Chem.A, 2015, 3, 6565.
S. Bhatia, N. Verma, Photocatalytic activity of ZnO nanoparticles with optimization of defects, Materials Research Buletin, 2017.

Acknowledgement

This work has been mainly supported by Croatian Science Foundation under the project IP-2016-06-3568

as a function of time.

- Content of the second secon
- Significant increase in MO degradation rate when ZnO thin films prepared by PE-ALD were used as photocatalysts. This indicates that the plasma process induces the formation of a higher amount of electronhole pairs on ZnO active surface which are responsible for the generation of reactive radicals and, consequently, enhanced photooxidation ability of PE-ALD made ZnO thin films.